

LILLY RUN

Harford County, MD

Submitted to:

Maryland Transportation Authority

April 2019

TABLE OF CONTENTS

1.0	Introduction	1
2.0	Methodology	1
2.1	Published Information	1
2.2	2 Agency Coordination	1
2.3	B Field Investigations	3
3.0	Findings	4
3.1	Published Information	4
3.2	2 Agency Coordination	8
3.3	B Field Investigations	8
4.0	Conclusions	12
5.0	References	13
	TABLE OF FIGURES	
Figure	TABLE OF FIGURES	2
-		
Figure	re 1: Vicinity Map	5
Figure Figure	re 1: Vicinity Mapre 2: USGS Topographic Map	5 6
Figure Figure	re 1: Vicinity Mapre 2: USGS Topographic Mapre 3: Published Water Resources Map	5 6
Figure Figure	re 1: Vicinity Mapre 2: USGS Topographic Mapre 3: Published Water Resources Map	5 6
Figure Figure Figure Table	re 1: Vicinity Mapre 2: USGS Topographic Mapre 3: Published Water Resources Mapre 4: Soil Survey Mapre	5 7

LIST OF APPENDICES

Appendix A: Agency Correspondence Appendix B: Delineated Resource Maps

Appendix C: Wetland, Upland, and Stream Datasheets

Appendix D: Photo Documentation

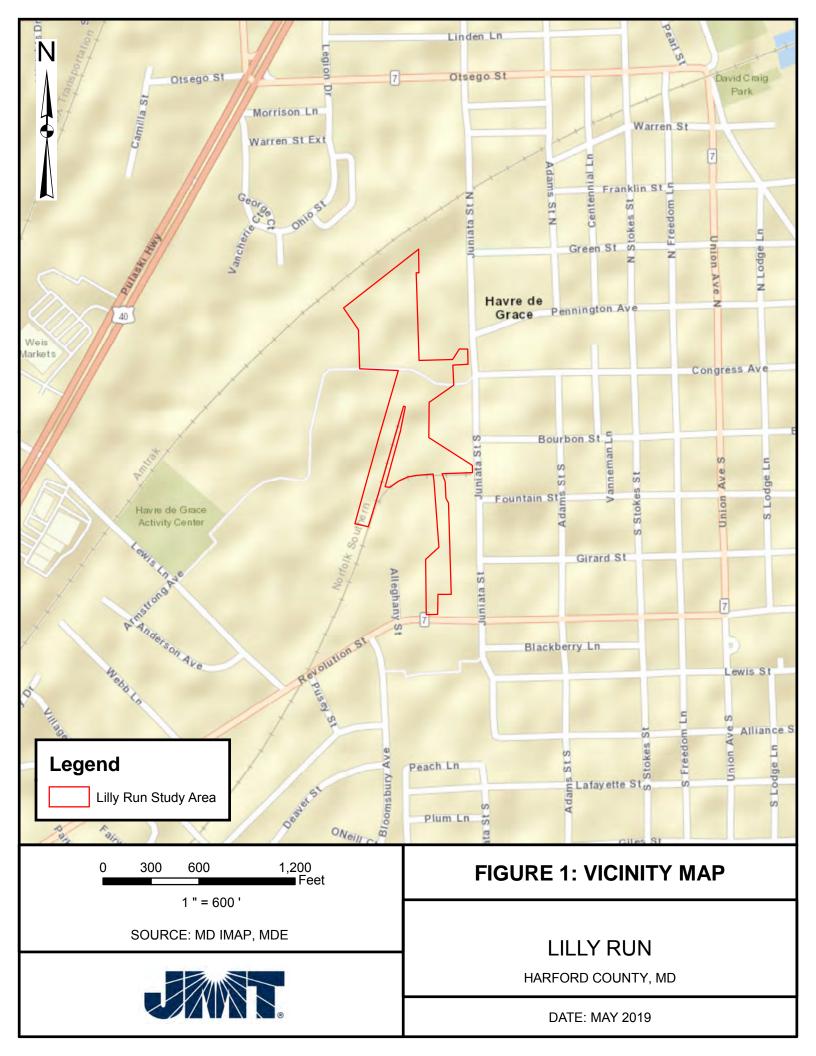
1.0 INTRODUCTION

The Maryland Transportation Authority is proposing a stream restoration project in Harvre De Grace, Harford County, Maryland. To support this effort, Johnson, Mirmiran & Thompson (JMT) performed a wetland and waterway investigation to identify environmental resources that could be impacted within the Study Area.

The Study Area for this project totals approximately 14 acres and is located west of the intersection of North Juniata Street and Congress Avenue (**Figure 1**). The area consists of athletic fields and forested areas in the central portion of the Study Area. Lands to the south and east are industrial and consist of high-density development.

The Study Area is within the Atlantic Coastal Plain Physiographic Province. It lies in the Maryland Department of the Environment (MDE) 8-digit Lower Susquehanna River Watershed (#02120201; MDE, 2005) and U.S. Geological Survey (USGS) Watershed Boundary Dataset 8-digit Lower Susquehanna Watershed (#02050306; USGS, 2016).

2.0 METHODOLOGY


2.1 PUBLISHED INFORMATION

JMT reviewed several background data sources prior to completing the field work. These sources included topographic maps, soil survey maps, National Wetland Inventory (NWI) and Maryland Department of Natural Resources (MDNR) mapped wetlands, MDE mapped streams, Federal Emergency Management Agency (FEMA) floodplain maps, and recent aerial photographs.

2.2 AGENCY COORDINATION

JMT coordinated with MDNR, U.S. Fish and Wildlife Service (USFWS), and Maryland Historic Trust (MHT) to determine whether state-protected species, federal-protected species, and/or known historical or archaeological sites are present within the Study Area.

2.3 FIELD INVESTIGATIONS

Field investigations are conducted to delineate potentially jurisdictional waters of the United States, including wetlands and waterways, within the Study Area. Wetland delineations are performed according to the *Corps of Engineers Wetlands Delineation Manual* (Environmental Laboratory, 1987) and the *Regional Supplement to the Corps of Engineers Wetland Delineation Manual: Atlantic and Gulf Coastal Plain Regional Supplement, Version 2.0*, (US Army Corps of Engineers [USACE], 2010). The *Corps of Engineers Wetland Delineation Manual* states three criteria (wetland vegetation, wetland soils, and wetland hydrology) must be present for an area to qualify as a wetland, unless the area is significantly disturbed (atypical situation) or is considered a problem area (e.g., seasonally ponded soils). If the area is significantly disturbed or a problem area, then only two parameters must be evident to classify an area as a wetland. All delineated wetlands are classified into system, subsystem, class and subclass according to the *Classification of Wetlands and Deep Water Habitats of the United States* (Cowardin *et al.*, 1979).

Wetland (hydrophytic) vegetation is determined using the USACE National Wetland Plant List (NWPL), (Lichvar *et al.*, 2016). This document assigns a wetland indicator status to plants based on how frequently they occur in wetlands. The NWPL wetland indicator status and definitions are listed in **Table 1**.

Table 1: National Wetland Plant List Indicator Status Groups

Wetland Indicator Status	Definition
Obligate Wetland (OBL)	Almost always occur in wetlands
Facultative Wetland (FACW)	Usually occur in wetlands, but may occur in non-wetlands
Facultative (FAC)	Occur in wetlands or non-wetlands
Facultative Upland (FACU)	Usually occur in non-wetlands, but may occur in wetlands
Obligate Upland (UPL)	Almost never occur in wetlands

Source: Lichvar et al., 2016

In order to delineate wetland boundaries, samples are taken periodically using an open-faced auger. Soil samples are collected at each wetland and upland sample point, and soil colors are recorded in the field using a Munsell soil color chart (Munsell Color, 2010).

Wetland and waterway boundaries are flagged in the field and documented using a Trimble® global positioning system (GPS) capable of sub-meter accuracy. Waterway boundaries are delineated at top of bank.

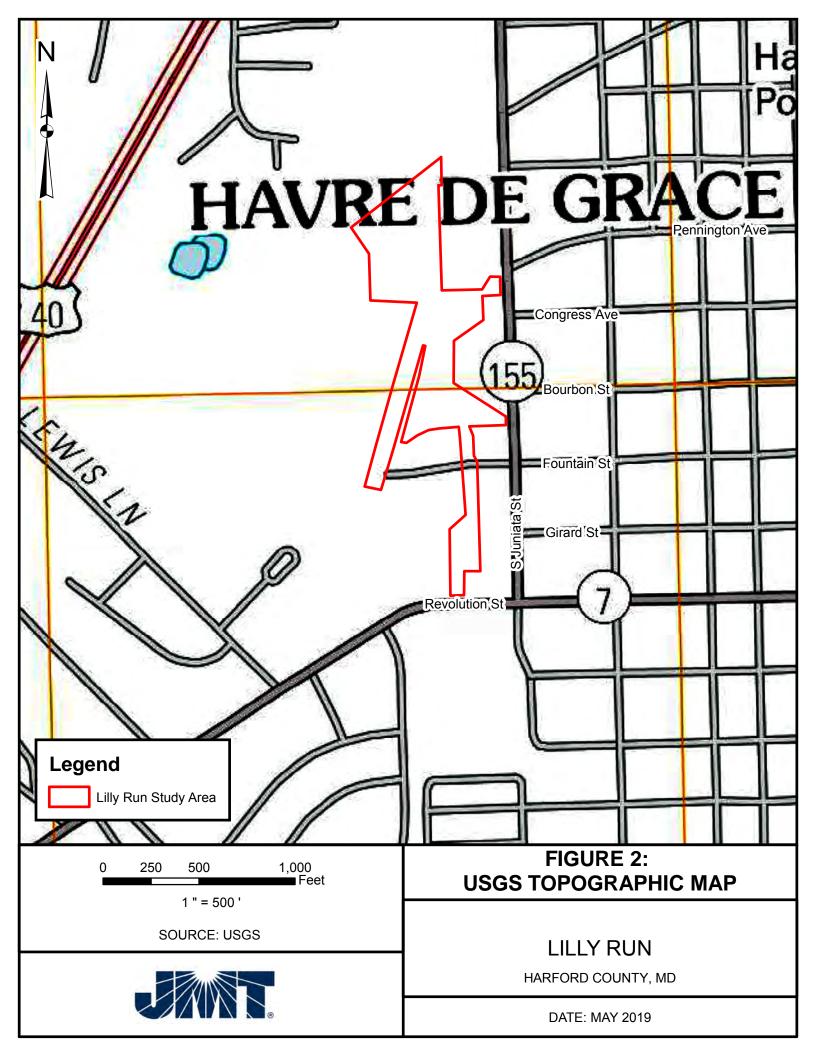
In the state of Maryland, both USACE and MDE regulate wetlands and waterways. USACE and the Environmental Protection Agency published the Clean Water Rule in the Federal Register (FR) on June 29, 2015 (80 FR 37053) to clarify which wetlands and waterways are regulated by USACE. The Clean Water Rule went into effect in many states, including Maryland, in August 2018. The delineated resources described within this report have been categorized per the Clean Water Rule to aid USACE regulators in determining jurisdiction. However, resources not jurisdictional to USACE may still be regulated by MDE.

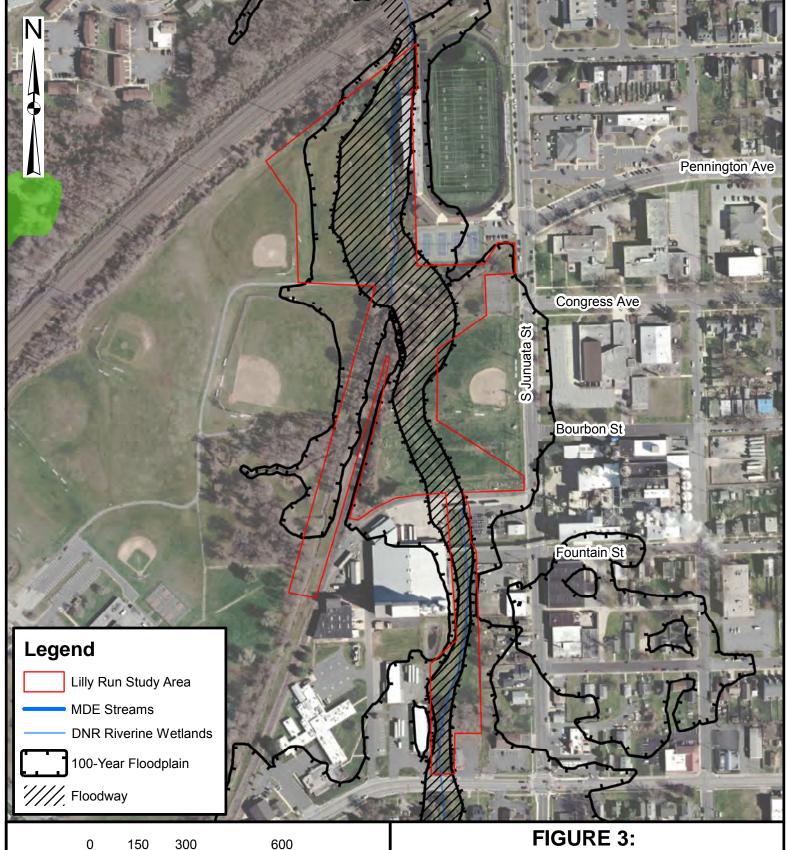
A functional assessment was completed for each of the delineated wetlands using *The Highway Methodology Workbook Supplement: Wetland Functions and Values* and *Wetland Function Value Evaluation Form* (USACE, 1999).

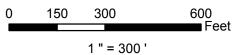
3.0 FINDINGS

3.1 PUBLISHED INFORMATION

The Havre De Grace Topographic 7.5' x 7.5' Quadrangle (USGS, 2011) depicts no mapped waterway north of the Study Area (**Figure 2**).

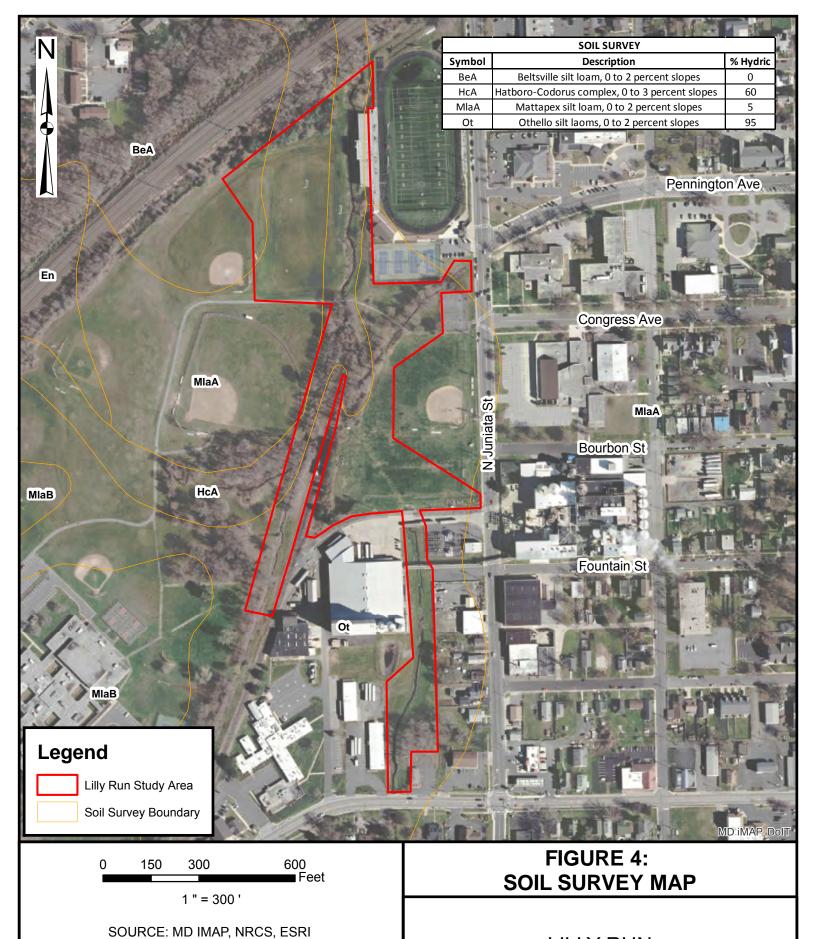

The NWI (USFWS, 2002) and MDNR (2005) wetland datasets show no mapped wetlands within the Study Area, but one mapped riverine system (**Figure 3**).


The MDE Stream Designated Use Class Map (MDE, 2014) shows no mapped waterways are located within the Study Area (**Figure 3**).


The FEMA floodplain mapping for Harford County, Maryland (FEMA, 2016) depicts portions of the Study Area within the 100-year floodplain (FIRM Panel #24025C0211E) (**Figure 3**).

The Web Soil Survey for Harford County, Maryland, (USDA-NRCS, 2017) indicates that four soil survey units occur within the Study Area; of these, two soil units are predominantly hydric (**Figure 4**).

SOURCE: MD IMAP, FEMA, DNR, USFWS NWI, MDE



PUBLISHED WATER RESOURCES

LILLY RUN

HARFORD COUNTY, MD

DATE: MAY 2019

LILLY RUN

HARFORD COUNTY, MD

DATE: MAY 2019

3.2 AGENCY COORDINATION

Rare, Threatened, and Endangered Species

On February 20, 2018 JMT contacted MDNR Wildlife and Heritage Service and Environmental Review Program (ERP) using the online DNR Trilogy Letter Application. This application is used to determine if statelisted rare, threatened, or endangered species are present in the Study Area, as well as the presence of anadromous finfish or other fish. A response from MDNR Wildlife and Heritage Service and MDNR ERP are both outstanding.

Species lists generated by the USFWS Information for Planning or Consultation (IPaC) website indicated the possible presence of the federally listed Northern Long-eared Bat (*Myotis septentrionalis*) in the project area. According to the USFWS Chesapeake Bay Field Office (CBFO) website, the only counties in Maryland with documented hibernacula are Allegany, Garrett, and Washington Counties, and the only counties with documented maternity roosts are in Garrett and Allegany Counties. This project is located in Harford County Maryland and, therefore would not be located within 150 feet of a known maternity roost tree and/or within 0.25 miles of a known hibernaculum.

MDTA completed the *Key to the Northern Long-Eared Bat 4(d) Rule for Federal Actions that May Affect Northern Long-Eared Bats* and will be submitting the key along with supporting project information to USFWS **Appendix A**.

No other federally listed threatened or endangered species are known to exist in the Study Area, other than occasional transient individuals. The USFWS Online Certification Letter dated March 20, 2019 documenting these results can be found in **Appendix A.**

Historical Resources

JMT contacted the Maryland Historic Trust (MHT) in a letter dated April 12, 2019 to determine if the proposed project may impact known historical or archeological sites. A response from MHT is still pending.

3.3 FIELD INVESTIGATIONS

Field investigations were conducted on March 27, 2019, to identify and delineate wetlands and waterways within the Study Area. JMT identified three non-tidal wetlands and six waterways. Locations of the delineated systems are shown on the Delineated Resource Maps in **Appendix B**.

At least one wetland sample plot was taken for each wetland, and one upland plot was taken for each wetland or shared between adjacent wetlands. Stream data sheets as well as Wetland Determination Data Forms for the representative wetland and upland sample plots are presented in **Appendix C**, and photographic documentation is included in **Appendix D**.

The identified wetlands and waterways are described below.

Wetlands

Wetland 01 (WET 01)

WET 01 is a palustrine, emergent wetland and is approximately 3,705 sf (0.085 acres) in size. It is located in the southern portion of the Study Area; it has formed within a small depression bordering an adjacent athletic field (**Appendix B, Map 2**). WET 01 receives hydrology from upland runoff from the adjacent athletic field. There is little vegetation within the wetland. Hay is also present, possibly as an attempt to reduce standing water on the athletic field. WET 01 does not have any functions or values and is considered to be a low-quality wetland.

The dominance test for hydrophytic vegetation was met. Due a lack of vegetation the only dominant species was water purslane (*Ludwigia palustris*, OBL), present in the herbaceous stratum.

Primary hydrologic indicators include surface water, high water table, saturation, and water stained leaves. Secondary hydrologic indicators include saturation visible on aerial imagery and FAC-neutral test. The soil profile met the depleted matrix (F3) indicator.

Wetland 02 (WET 02A and WET 02B)

WET 02A and WET 02B are two palustrine emergent wetlands, located to the east of Lilly Run in the northern portion of the Study Area (**Appendix B, Map 1**). WET 02A is approximately 1,783 sf (0.04 acres) in size, and WET 02B is 1,798 sf (0.041 Acres). Although the wetland polygons are separated, only one data point was taken due to similarities in soil, hydrology, and vegetation. WET 02A and WET 02B appear to be designed stormwater management systems; both wetlands are fed by drainage pipes originating from the adjacent sports complex. The vegetation that was observed within each wetland was most likely planted. WET 02A is also connected to Lilly Run through surface flow during periods of rainfall. Functions and values provided by WET 02 include sediment/toxicant retention and sediment/shoreline stabilization. WET 02A and WET 02B are moderate to high quality wetlands.

The dominance test for hydrophytic vegetation was met. In the tree stratum bald cypress (*Taxodium distichum*, OBL) was dominant. Dominant species in the herbaceous stratum included soft rush (*Juncus effusus*, OBL), cat tail (*Typha latifolia*, OBL), and common reed (*Phragmites australis*, FACW).

Primary hydrologic indicators included surface water, high water table, saturation, algal mat or crust, and presence of reduced iron. Secondary indicators included saturation visible on aerial imagery, geomorphic position, and the FAC-neutral test. The soil profile met the redox dark surface (F6) indicator.

Wetland 03 (WET 03)

WET 03 is a palustrine emergent wetland, located to the west of Lilly Run in the northern portion of the Study Area (**Appendix B, Map 1**). It is approximately 1,963 sf (0.045 acres) in size and has formed within a depression at the toe of an adjacent slope. Wet 03 receives hydrology from upland runoff and occasional flood flow from Lilly Run. Functions and values provided by WET 03 include floodflow alteration, wildlife habitat, sediment/toxicant retention, and sediment/shoreline stabilization. WET 03 is a moderate quality wetland.

The dominance test for hydrophytic vegetation was met. In the tree stratum box elder (*Acer negundo*, FAC) was dominant. Common reed was dominant in the herbaceous stratum.

Primary hydrologic indicators included surface water, high water table, saturation, and water stained leaves. Secondary indicators included drainage patterns, saturation visible on aerial imagery, and FAC-neutral test. The soil profile met the redox dark surface (F6) indicator.

Waterways

Watercourse 01 (WUS 01)

WUS 01 is a perennial stream located in the northeastern portion of the Study Area (**Appendix B, Map 1 and Map 2**). The stream flows to the southwest and eventually flows into WUS 02 (Lilly Run). The stream channel is approximately 3 to 5 feet wide with banks between 1 and 2.5 feet high; at the time of delineation flow within the channel varied between 2 and 6 inches deep. Substrate consists of cobble, gravel, sand, and silt.

Watercourse 02 (WUS 02 – Lilly Run)

WUS 02 is a perennial stream that runs up the center of the Study Area (**Appendix B, Map 1 and Map 2**). The stream flows to the north starting at the south end of the Study Area where portions of the stream are culverted under the athletic field that is located to the east of WET 01. WUS 01, WUS 03, WUS 04 and WUS 05 all contribute hydrology to WUS 02. The stream channel is approximately 6 to 15 feet wide with banks 3 to 18 feet high. The southern portion of WUS 02 has banks that are stabilized by rail-road ties, with large amounts of sediment build-up along the artificial banks. In the middle of the study area WUS 02 has artificial banks made of large stone. At the time of delineation flow within the channel varied between 4 to 18 inches in depth. Substrate varies between cobble, gravel, and sand.

Watercourse 03 (WUS 03)

WUS 03 is an ephemeral channel that runs parallel to the southern portion of WUS 02 (**Appendix B, Map 2**). The channel runs north and functions as a backwater channel of WUS 02. The stream channel is

approximately 2 feet wide with banks 1 foot high; at the time of the delineation, there was no flow observed within the channel. The substrate consists of silt and vegetation.

Watercourse 04 (WUS 04)

WUS 04 is an intermittent stream that originates from a small pipe that runs perpendicular to WUS 02 (**Appendix B, Map 2**). The stream flows to the west; it is a tributary to Lilly Run. The stream channel is approximately 3 feet wide with banks 3 feet in height; at the time of delineation there was no flow observed within the channel. The substrate consists of cobble, gavel, silt, and concrete.

Watercourse 05 (WUS 05)

WUS 05 is a perennial stream located in the western end of the Study Area (**Appendix B, Map 1 and Map 2**). The stream originates outside of the Study Area and flows to the north; it is a tributary to WUS 02. The stream channel is between 4 and 5 feet in width with banks approximately 3 feet high; at the time of delineation, flow within the channel varied between 4 and 6 inches deep. The substrate consists of gravel and sand.

Watercourse 06 (WUS 06)

WUS 06 is a perennial stream located to the west of WUS 05 (**Appendix B, Map 2**). The stream flows to the northeast; is a tributary to WUS 05. The stream channel is approximately 7 feet wide with banks 2 feet high; at the time of delineation, flow within the channel was 4 inches deep. The substrate consists of cobble, gravel, and sand.

4.0 CONCLUSIONS

JMT conducted a review of published information and performed field investigations based on the *Regional Supplement to the Corps of Engineers Wetland Delineation Manual: Atlantic and Gulf Coastal Plain Region (Version 2.0)* to identify potentially jurisdictional wetlands and WUS within the Study Area. Based on the results of the investigation, JMT identified three non-tidal wetlands and six waterways within the Study Area. **Table 2** summarizes the delineated resources.

Table 2: Summary of Delineated Resources

Wetland Name	Cowardin Classification
WET 01	PEM
WET 02A/WET 02B	PEM
WET 03	PEM
Waterway Name	Stream Classification
WUS 01	Perennial
WUS 02	Perennial
WUS 03	Ephemeral
WUS 04	Intermittent
WUS 05	Perennial
WUS 06	Perennial

Environmental resources identified in this report may be subject to verification and regulation by USACE and MDE. Impacts to these resources may require authorization by USACE and MDE as well as mitigation.

5.0 REFERENCES

- Cowardin, L. M., V. Carter, F. Golet, and E.T. LaRoe. 1979. *Classification of Wetlands and Deep Water Habitats of the United States*. United States Fish and Wildlife Service, Washington DC.
- Environmental Laboratory. 1987. *Corps of Engineers Wetlands Delineation Manual*, Technical Report Y-87-1, US Army Engineer Waterways Experiment Station, Vicksburg, MS.
- Federal Emergency Management Agency. 2016. "Digital Flood Rate Insurance Map, Harford County, MD, Panel #24025C0211E". https://msc.fema.gov/portal/advanceSearch. Accessed April 05, 2019.
- Lichvar, R.W., D.L. Banks, W.N. Kirchner, and N.C. Melvin. 2016. *The National Wetland Plant List*. 2016 wetland ratings. Phytoneuron 2016-30: 1-17. Published 28 April 2016. ISSN 2153 733X.
- Maryland Department of the Environment (MDE). 2005. "Maryland's 8-Digit Watersheds." http://www.mde.state.md.us/programs/Water/TMDL/DataCenter/Pages/8DigitWatershed.aspx. Accessed April 5, 2019.
- MDE. 2014. "Maryland's Designated Uses/Use Class Map."

 http://mde.maryland.gov/programs/Water/TMDL/WaterQualityStandards/Pages/DesignatedUsesMaps.aspx. Accessed April 5, 2019.
- MDE. 2005. "Maryland's 8-Digit Watersheds."

 http://www.mde.state.md.us/programs/Water/TMDL/DataCenter/Pages/8DigitWatershed.aspx.

 Accessed April 5, 2019.
- Maryland Department of Natural Resources. 2005. "DNR Wetlands Inventory." Via MD iMAP. http://geodata.md.gov/imap/services. Accessed April 5, 2019.
- MD iMAP Services. 2013. "Imagery/MD_SixInchImagery". http://geodata.md.gov/imap/services. Accessed April 5, 2019.
- Munsell Color. 2010. Munsell Soil Color Charts. Grand Rapids, MI.
- U.S. Army Corps of Engineers and Environmental Protection Agency. 2015. "Clean Water Rule: Definition of 'Waters of the United States'." Final Rule. Federal Register, 80 FR 37053.
- U.S. Army Corps of Engineers. 2010. Regional Supplement to the Corps of Engineers Wetland Delineation Manual: Atlantic and Gulf Coast Region (Version 2.0), ed. J. S. Wakeley, R. W. Lichvar, and C. V. Noble. ERDC/EL TR-10-20. Vicksburg, MS: US Army Engineer Research and Development Center.

- U.S. Department of Agriculture, Natural Resources Conservation Service (USDA-NRCS). 2017. "NRCS Soil Survey for Harford County". https://websoilsurvey.sc.egov.usda.gov/App/HomePage.htm. Accessed April 05, 2019.
- U.S. Fish and Wildlife Service. 2002. "Digital National Wetlands Inventory." Via MD iMAP. http://geodata.md.gov/imap/services. Accessed April 05, 2019.
- U.S. Geological Survey (USGS). 2011. "USGS 7.5' X 7.5' Quadrangle for Havre De Grace, MD". https://ngmdb.usgs.gov. Accessed April 05, 2019.
- USGS. 2016. "8-Digit Watershed Boundary Dataset." Via USDA-NRCS Geospatial Data Gateway. https://datagateway.nrcs.usda.gov/GDGOrder.aspx. Accessed April 05, 2019.

APPENDIX A AGENCY CORRESPONDENCE

United States Department of the Interior

FISH AND WILDLIFE SERVICE

Chesapeake Bay Ecological Services Field Office 177 Admiral Cochrane Drive Annapolis, MD 21401-7307 Phone: (410) 573-4599 Fax: (410) 266-9127

http://www.fws.gov/chesapeakebay/

http://www.fws.gov/chesapeakebay/endsppweb/ProjectReview/Index.html

In Reply Refer To: March 20, 2019

Consultation Code: 05E2CB00-2019-SLI-0980

Event Code: 05E2CB00-2019-E-02427

Project Name: MDTA Phase II I-95 Improvements Lilly Run Mitigation Site

Subject: Updated list of threatened and endangered species that may occur in your proposed

project location, and/or may be affected by your proposed project

To Whom It May Concern:

The enclosed species list identifies threatened, endangered, proposed and candidate species, as well as proposed and final designated critical habitat, that may occur within the boundary of your proposed project and/or may be affected by your proposed project. This species list fulfills the requirements of the U.S. Fish and Wildlife Service (Service) under section 7(c) of the Endangered Species Act (Act) of 1973, as amended (16 U.S.C. 1531 et seq.).

New information based on updated surveys, changes in the abundance and distribution of species, changed habitat conditions, or other factors could change this list. Please feel free to contact us if you need more current information or assistance regarding the potential impacts to federally proposed, listed, and candidate species and federally designated and proposed critical habitat. Please note that under 50 CFR 402.12(e) of the regulations implementing section 7 of the Act, the accuracy of this species list should be verified after 90 days. This verification can be completed formally or informally as desired. The Service recommends that verification be completed by visiting the ECOS-IPaC website at regular intervals during project planning and implementation for updates to species lists and information. An updated list may be requested through the ECOS-IPaC system by completing the same process used to receive the enclosed list.

The purpose of the Act is to provide a means whereby threatened and endangered species and the ecosystems upon which they depend may be conserved. Under sections 7(a)(1) and 7(a)(2) of the Act and its implementing regulations (50 CFR 402 et seq.), Federal agencies are required to utilize their authorities to carry out programs for the conservation of threatened and endangered species and to determine whether projects may affect threatened and endangered species and/or designated critical habitat.

A Biological Assessment is required for construction projects (or other undertakings having similar physical impacts) that are major Federal actions significantly affecting the quality of the human environment as defined in the National Environmental Policy Act (42 U.S.C. 4332(2) (c)). For projects other than major construction activities, the Service suggests that a biological evaluation similar to a Biological Assessment be prepared to determine whether the project may affect listed or proposed species and/or designated or proposed critical habitat. Recommended contents of a Biological Assessment are described at 50 CFR 402.12.

If a Federal agency determines, based on the Biological Assessment or biological evaluation, that listed species and/or designated critical habitat may be affected by the proposed project, the agency is required to consult with the Service pursuant to 50 CFR 402. In addition, the Service recommends that candidate species, proposed species and proposed critical habitat be addressed within the consultation. More information on the regulations and procedures for section 7 consultation, including the role of permit or license applicants, can be found in the "Endangered Species Consultation Handbook" at:

http://www.fws.gov/endangered/esa-library/pdf/TOC-GLOS.PDF

Please be aware that bald and golden eagles are protected under the Bald and Golden Eagle Protection Act (16 U.S.C. 668 et seq.), and projects affecting these species may require development of an eagle conservation plan (http://www.fws.gov/windenergy/eagle_guidance.html). Additionally, wind energy projects should follow the wind energy guidelines (http://www.fws.gov/windenergy/) for minimizing impacts to migratory birds and bats.

Guidance for minimizing impacts to migratory birds for projects including communications towers (e.g., cellular, digital television, radio, and emergency broadcast) can be found at: http://www.fws.gov/migratorybirds/CurrentBirdIssues/Hazards/towers/towers.htm; http://www.towerkill.com; and http://www.fws.gov/migratorybirds/CurrentBirdIssues/Hazards/towers/comtow.html.

We appreciate your concern for threatened and endangered species. The Service encourages Federal agencies to include conservation of threatened and endangered species into their project planning to further the purposes of the Act. Please include the Consultation Tracking Number in the header of this letter with any request for consultation or correspondence about your project that you submit to our office.

Attachment(s):

- Official Species List
- USFWS National Wildlife Refuges and Fish Hatcheries
- Wetlands

Official Species List

This list is provided pursuant to Section 7 of the Endangered Species Act, and fulfills the requirement for Federal agencies to "request of the Secretary of the Interior information whether any species which is listed or proposed to be listed may be present in the area of a proposed action".

This species list is provided by:

Chesapeake Bay Ecological Services Field Office 177 Admiral Cochrane Drive Annapolis, MD 21401-7307 (410) 573-4599

Project Summary

Consultation Code: 05E2CB00-2019-SLI-0980

Event Code: 05E2CB00-2019-E-02427

Project Name: MDTA Phase II I-95 Improvements Lilly Run Mitigation Site

Project Type: TRANSPORTATION

Project Description: The Maryland Transportation Authority (MDTA) is proposing the second

implementation phase of the I-95 Section 200 Express Toll Lanes Improvements in Baltimore and Harford Counties. MDTA will be implementing stream restoration practices to enhance overall water quality and stream stability. Practices to be implemented include, but are not limited to, reconfiguration of horizontal and vertical profiles of existing stream channels using natural channel design techniques, bank stabilization, as well as conversion of concrete lined channels to more naturalized systems. Wetland creation may be implemented in addition. Implementation of these practices will require disturbance to active stream channels, however, the end result will be improvements to water

quality.

Project Location:

Approximate location of the project can be viewed in Google Maps: https://www.google.com/maps/place/39.54692887235203N76.09940464040105W

Counties: Harford, MD

Endangered Species Act Species

There is a total of 1 threatened, endangered, or candidate species on this species list.

Species on this list should be considered in an effects analysis for your project and could include species that exist in another geographic area. For example, certain fish may appear on the species list because a project could affect downstream species. Note that 1 of these species should be considered only under certain conditions.

IPaC does not display listed species or critical habitats under the sole jurisdiction of NOAA Fisheries¹, as USFWS does not have the authority to speak on behalf of NOAA and the Department of Commerce.

See the "Critical habitats" section below for those critical habitats that lie wholly or partially within your project area under this office's jurisdiction. Please contact the designated FWS office if you have questions.

1. <u>NOAA Fisheries</u>, also known as the National Marine Fisheries Service (NMFS), is an office of the National Oceanic and Atmospheric Administration within the Department of Commerce

Mammals

NAME STATUS

Northern Long-eared Bat Myotis septentrionalis

Threatened

No critical habitat has been designated for this species.

This species only needs to be considered under the following conditions:

 Federal agencies may finish consultation with the NLEB 4(d) Rule Consultation Form at https://www.fws.gov/chesapeakebay/pdf/StreamlinedConsultationForm29Feb2016.pdf for projects with tree clearing = to or > 15 acres; send to Trevor_Clark@fws.gov

Species profile: https://ecos.fws.gov/ecp/species/9045

Critical habitats

THERE ARE NO CRITICAL HABITATS WITHIN YOUR PROJECT AREA UNDER THIS OFFICE'S JURISDICTION.

USFWS National Wildlife Refuge Lands And Fish Hatcheries

Any activity proposed on lands managed by the <u>National Wildlife Refuge</u> system must undergo a 'Compatibility Determination' conducted by the Refuge. Please contact the individual Refuges to discuss any questions or concerns.

THERE ARE NO REFUGE LANDS OR FISH HATCHERIES WITHIN YOUR PROJECT AREA.

Wetlands

Impacts to <u>NWI wetlands</u> and other aquatic habitats may be subject to regulation under Section 404 of the Clean Water Act, or other State/Federal statutes.

For more information please contact the Regulatory Program of the local <u>U.S. Army Corps of Engineers District</u>.

Please note that the NWI data being shown may be out of date. We are currently working to update our NWI data set. We recommend you verify these results with a site visit to determine the actual extent of wetlands on site.

RIVERINE

• R2UBH

Larry Hogan, Governor Boyd Rutherford, Lt. Governor Jeannie Haddaway-Riccio. Secretary

Coordination Sheet for MD DNR Environmental Review Related to Project Locations

Date of Request: March 13, 2019

Project Name and Location: MDTA Phase II I-95 Improvements Lilly Run Site

The Maryland Transportation Authority (MDTA) is proposing the second implementation phase of the I-95 Section 200 Express Toll Lanes Improvements in Baltimore and Harford Counties. MDTA will be implementing stream restoration practices to enhance overall water quality and stream stability. Practices to be implemented include, but are not limited to, reconfiguration of horizontal and vertical profiles of existing stream channels using natural channel design techniques, bank stabilization, as well as conversion of concrete lined channels to more naturalized systems. Wetland creation may be implemented in addition. Implementation of these practices will require disturbance to active stream channels, however, the end result will be improvements to water quality.

This letter addresses the Lilly Run Mitigation Site.

NAME OF STREAM(S) (and MDE Use Classification) WITHIN THE STUDY AREA: Unnamed Tributary to Chesapeake Bay

DNR RESPONSE:

 $\sqrt{}$ Generally, no instream work is permitted in Use I streams during the period of March 1 through June 15, inclusive, during any year.

ADDITIONAL RESOURCES NOTES:

Anadromous fish species, including yellow perch, herring species and white perch have been documented near this project site. No MBSS sites are located near the project and therefore no anadromous fish species have been documented near the project site. However, these streams do support many resident fish species documented in other locations.

The Wildlife and Heritage Service has determined that there are no official State or Federal records for listed plant or animal species within the delineated area shown on the map provided. As a result, we have no specific concerns regarding potential impacts or recommendations for protection measures at this time. Please let us know however if the limits of proposed disturbance or overall site boundaries change and we will provide you with an updated evaluation.

In addition, our analysis of the information provided also suggests that the forested area on or adjacent to the project site contains Forest Interior Dwelling Bird habitat. Populations of many Forest Interior Dwelling Bird Species (FIDS) are declining in Maryland and throughout the eastern United States. The conservation of FIDS habitat is strongly encouraged by the Department of Natural Resources.

ADDITIONAL COMMENTS ON BMPS:

Existing riparian vegetation in the area of the stream channel should be preserved as much as possible to maintain aquatic habitat and provide shading to the stream. Areas designated for the access of equipment and for the removal or disposal of material should avoid impacts to the stream and associated riparian vegetation. Any temporarily disturbed areas should be restored and re-vegetated. The use of concrete or grouting required to conduct repairs should be managed to assure curing processes do not impact the stream or modify stream PH.

The project should be designed to maintain or enhance fish passage through the project area, particularly during low flow periods.

For projects when there is no reasonable alternative to the adverse effects on nontidal wetlands or other aquatic or terrestrial habitat, the applicant shall be required to provide measures to mitigate, replace, or minimize the loss of habitat.

The fisheries resources in the above area should be adequately protected by the instream work restrictions referenced above, stringent sediment and erosion control methods, and other Best Management Practices typically used for protection of stream resources.

MD DNR, Environmental Review Program signature

Gwen Gibson

Guen Gibsen

DATE: May 6, 2019

Key to the Northern Long-Eared Bat 4(d) Rule for Federal Actions that May Affect Northern Long-Eared Bats

A separate key is available for non-federal activities

Federal agency actions that involve incidental take not prohibited under the final 4(d) rule may result in effects to individual northern long-eared bats. Per section 7 of the Act, if a federal agency's action may affect a listed species, consultation with the Service is required. This requirement does not change when a 4(d) rule is implemented. However, for this 4(d) rule, the Service proposed a framework to streamline section 7 consultations when federal actions may affect the northern long-eared bat but will not cause prohibited take. Federal agencies have the option to rely upon the finding of the programmatic biological opinion for the final 4(d) rule to fulfill their project-specific section 7 responsibilities by using the framework. This key will help federal agencies determine if their actions may cause prohibited incidental take of northern long-eared bats as defined in the 4(d) rule under the Endangered Species Act and if separate section 7 consultation may be necessary. Also, the framework for streamlining northern long-eared bat section 7 consultation is provided.

1. Is the action area (i.e., the area affected by all direct and indirect project effects) located wholly **outside the White-nose Syndrome Zone?** For the most current version of the White-nose Syndrome Zone map, please see www.fws.gov/midwest/endangered/mammals/nleb/pdf/WNSZone.pdf

Yes, the action area is located wholly outside the white-nose syndrome zone. Incidental take (see Definitions below) of northern long-eared bats is not prohibited in areas outside the White-nose Syndrome Zone. The federal agency can rely upon the finding of the programmatic biological opinion for the final 4(d) rule to fulfill their project-specific section 7 responsibilities if they use the framework described below. This framework is optional, if the federal agency chooses not to follow the framework, standard section 7 consultation procedures apply.

No, the action area is located partially or wholly inside the white-nose syndrome zone.

Continue to #2

2. Will the action take place within a cave or mine where northern long-eared bats hibernate (i.e., hibernaculum) or could it alter the entrance or the environment (physical or other alteration) of a hibernaculum?

Yes, the action will take place within a northern long-eared bat hibernaculum or it could alter the entrance or the environment (physical or other alteration) of a hibernaculum.

Take (see Definitions below) of northern long-eared bats within hibernacula is prohibited, including actions that may change the nature of the hibernaculum's environment or entrance to it, even when the bats are not present. If your activity includes work in a

hibernaculum or it could alter its entrance or environment, please contact the Service's Ecological Services Field Office located nearest to the project area. To find contact information for the Ecological Services Field Offices, please see www.fws.gov/offices.

X No, the action will not take place within a northern long-eared bat hibernaculum or alter its entrance or environment.

Continue to #3

3. Will the action involve **tree removal** (see definition below)?

No, the action does not include tree removal.

Incidental take (see Definitions below) from activities that do not involve tree removal and do not take place within hibernacula or would not alter the hibernaculum's entrance or environment (see Question #3), is not prohibited. The federal agency can rely upon the finding of the programmatic biological opinion for the final 4(d) rule to fulfill their project-specific section 7 responsibilities if they use the framework described below. This framework is optional, if the federal agency chooses not to follow the framework, standard section 7 consultation procedures apply.

Yes - continue to #4

4. Is the action the **removal of hazardous trees** for protection of human life or property?

Yes, the action is removing hazardous trees.

Incidental take (see Definitions below) of northern long-eared bats as a result of hazardous tree removal is not prohibited. The federal agency can rely upon the finding of the programmatic biological opinion for the final 4(d) rule to fulfill their project-specific section 7 responsibilities if they use the framework described below. This framework is optional, if the federal agency chooses not to follow the framework, standard section 7 consultation procedures apply.

No, the action is not removing hazardous trees. Continue to #5

5. Will the action include one or both of the following: 1) removing a northern long-eared bat known occupied maternity roost tree or any trees within 150 feet of a known occupied maternity roost tree from June 1 through July 31; or 2) removing any trees within 0.25 miles of a northern long-eared bat hibernaculum at any time of year?

Incidental take (see Definitions below) from tree removal activities is not prohibited unless it results from removing a known occupied maternity roost tree or from tree removal activities within 150 feet of a known occupied maternity roost tree from June 1 through July 31 or results from tree removal activities within 0.25 mile of a hibernaculum at any time. The federal agency can rely upon the finding of the programmatic biological opinion for the final 4(d) rule to fulfill their project-specific section 7 responsibilities if

they use the framework described below. This framework is optional, if the federal agency chooses not to follow the framework, standard section 7 consultation procedures apply.

Yes

Incidental take (see Definitions below) of northern long-eared bats is prohibited if it occurs as a result of removing a known occupied maternity roost tree or removing trees within 150 feet of a known occupied maternity roost tree during the pup season from June 1 through July 31 or as a result of removing trees from within 0.25 mile of a hibernaculum at any time of year. This does not mean that you cannot conduct your action; however, standard section 7 consultation procedures apply. Please contact your nearest Ecological Services Field Office. To find contact information for the Ecological Services Field Offices, please see www.fws.gov/offices

How do I know if there is a maternity roost tree or hibernacula in the action area?

We acknowledge that it can be difficult to determine if a maternity roost tree or a hibernaculum is in your project area. Location information for both resources is generally kept in state Natural Heritage Inventory databases – the availability of this data varies state-by-state. Many states provide online access to their data, either directly by providing maps or by providing the opportunity to make a data request. In some cases, to protect those resources, access to the information may be limited. A web page with links to state Natural Heritage Inventory databases is available at www.fws.gov/midwest/endangered/mammals/nleb/nhisites.html.

When looking for information on the presence of maternity roost trees or hibernacula within your project area, our expectation is that the federal action agency will complete due diligence to determine if date is available. If information is not available, document your attempt to find the information and send it with your determination under step 1 of the framework (see below).

We do not require federal agencies to conduct surveys; however, we recommend that surveys be conducted whenever possible. Surveys will help federal agencies meet their responsibilities under section 7(a)(1) of the Act. Active participation of federal agencies in survey efforts will lead to a more effective conservation strategy for the northern long-eared bat. In addition, should the Service reclassify the species as endangered in the future, an agency with a good understanding of how the species uses habitat based on surveys within its action areas could have greater flexibility under section 7(a)(2) of the Act. Recommended survey methods are available at www.fws.gov/midwest/endangered/mammals/nleb.

Definitions

- "Incidental take" is defined by the Endangered Species Act as take that is "incidental to, and not the purpose of, the carrying out of an otherwise lawful activity." For example, harvesting trees can kill bats that are roosting in the trees, but the purpose of the activity is not to kill bats.
- **"Known hibernacula"** are defined as locations where one or more northern long-eared bats have been detected during hibernation or at the entrance during fall swarming or spring emergence. Given the challenges of surveying for northern long-eared bats in the winter, any hibernacula with northern long-eared bats observed at least once, will continue to be considered "known hibernacula" as long as the hibernacula remains suitable for northern long-eared bat.
- **"Known occupied maternity roost trees"** is defined in the 4(d) rule as trees that have had female northern long-eared bats or juvenile bats tracked to them or the presence of female or juvenile bats is known as a result of other methods. Once documented, northern-long eared bats are known to continue to use the same roosting areas. Therefore, a tree will be considered to be a "known occupied maternity roost" as long as the tree and surrounding habitat remain suitable for northern long-eared bat. The incidental take prohibition for known occupied maternity roosts trees applies only during the during the pup season (June 1 through July 31).
- **"Take"** is defined by the ESA as 'to harass, harm, pursue, hunt, shoot, wound, kill, trap, capture, or collect" any endangered species. Purposeful take is when the reason for the activity or action is to conduct some form of take. For instance, conducting a research project that includes collecting and putting bands on bats is a form of purposeful take.
- "Tree removal" is defined in the 4(d) rule as cutting down, harvesting, destroying, trimming, or manipulating in any other way the trees, saplings, snags, or any other form of woody vegetation likely to be used by northern long-eared bats.

Optional Framework to Streamline Section 7 Consultation for the Northern Long-Eared Bat

The primary objective of the framework is to provide an efficient means for U.S. Fish and Wildlife Service verification of federal agency determinations that their proposed actions are consistent with those evaluated in the programmatic intra-Service consultation for the final 4(d) rule and do not require separate consultation. Such verification is necessary because incidental take is prohibited in the vicinity of known hibernacula and known roosts, and these locations are continuously updated. Federal agencies may rely on this Biological Opinion to fulfill their project-specific section 7(a)(2) responsibilities under the following framework:

- 1. For all federal activities that may affect the northern long-eared bat, the action agency will provide project-level documentation describing the activities that are excepted from incidental take prohibitions and addressed in this consultation. The federal agency must provide written documentation to the appropriate Service Field Office when it is determined their action may affect (i.e., not likely to adversely affect or likely to adversely affect) the northern long-eared bat, but would not cause prohibited incidental take. This documentation must follow these procedures:
 - a. In coordination with the appropriate Service Field Office, each action agency must make a determination as to whether their activity is excepted from incidental taking prohibitions in the final 4(d) rule. Activities that will occur within 0.25 mile of a known hibernacula or within 150 feet of known, occupied maternity roost trees during the pup season (June 1 to July 31) are not excepted pursuant to the final 4(d) rule. This determination must be updated annually for multi-year activities.
 - b. At least 30 days in advance of funding, authorizing, or carrying out an action, the federal agency must provide written notification of their determination to the appropriate Service Field Office.
 - c. For this determination, the action agency will rely on the definitions of prohibited activities provided in the final 4(d) rule and the activities considered in this consultation.
 - d. The determination must include a description of the proposed project and the action area (the area affected by all direct and indirect project effects) with sufficient detail to support the determination.
 - e. The action agency must provide its determination as part of a request for coordination or consultation for other listed species or separately if no other species may be affected.
 - f. Service concurrence with the action agency determination is not required, but the Service may advise the action agency whether additional information indicates consultation for the northern long-eared bat is required; i.e., where the proposed project includes an activity not covered by the 4(d) rule and thus not addressed in the Biological Opinion and is subject to additional consultation.

5

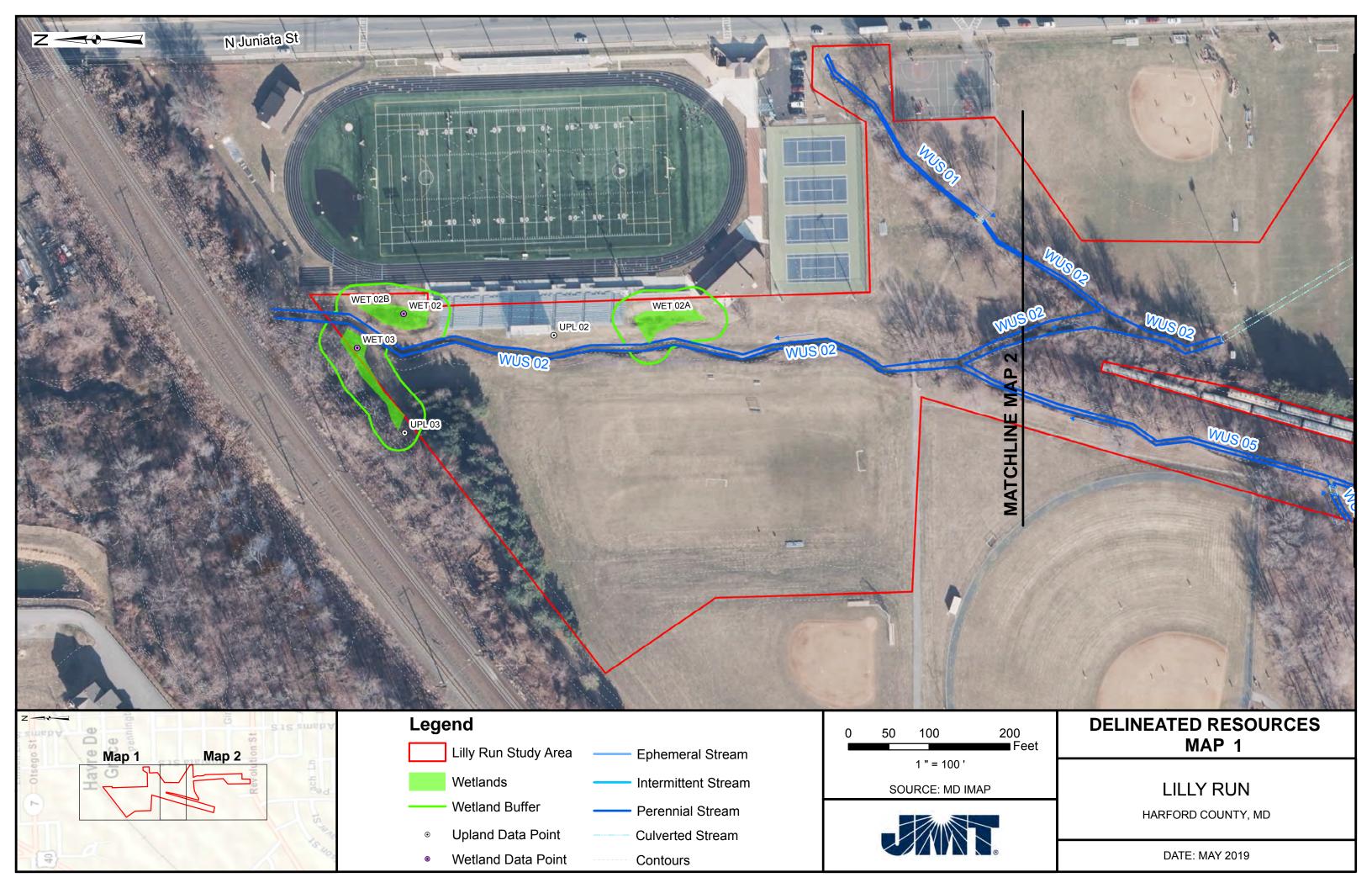
g. If the Service does not respond within 30 days under (f) above, the action agency may presume its determination is informed by best available information and consider its project responsibilities under section 7(a)(2) with respect to the northern long-eared bat fulfilled through this programmatic Biological Opinion.

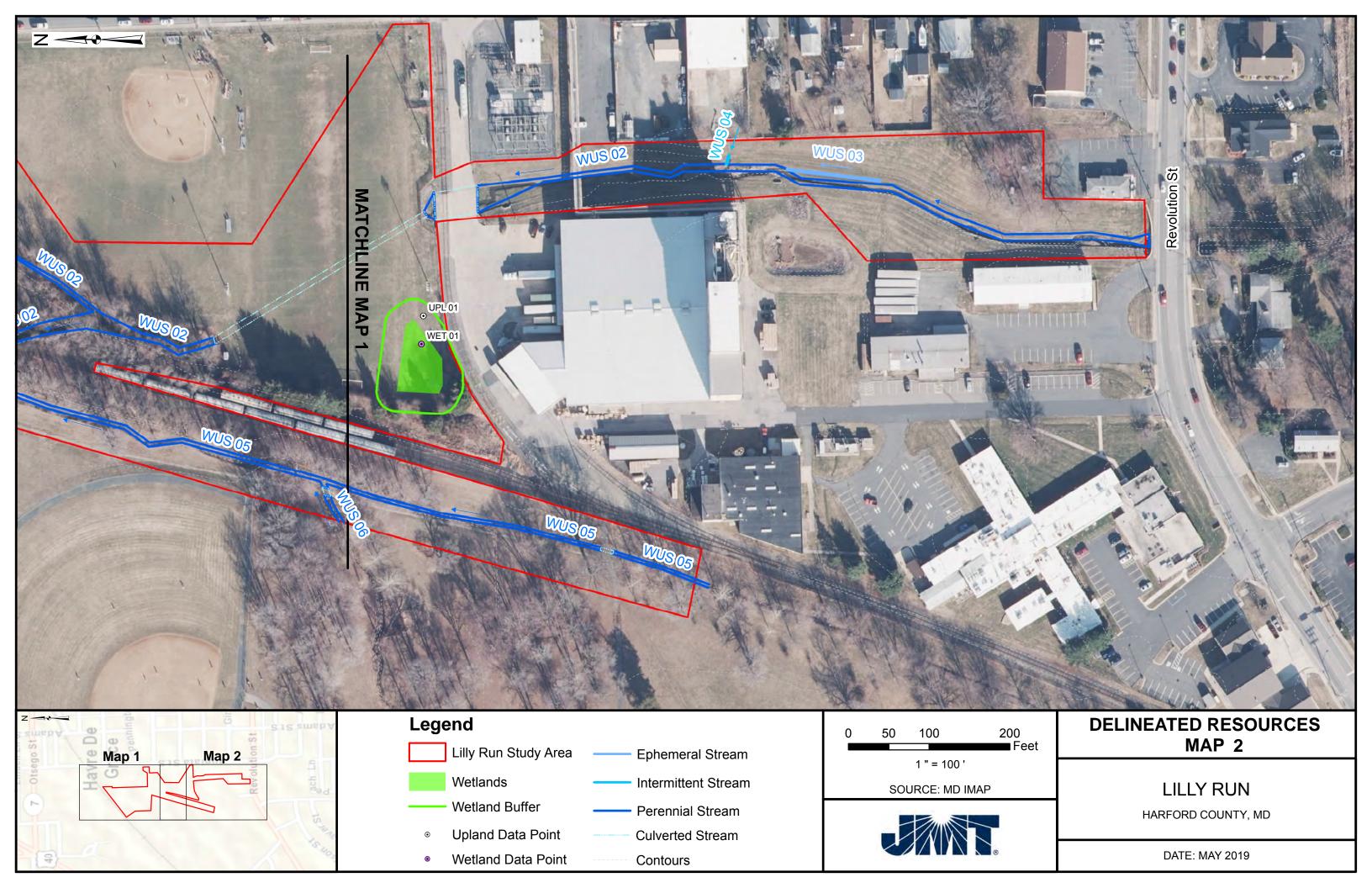
2. Reporting

- a. For monitoring purposes, the Service will assume all activities are conducted as described. If an agency does not conduct an activity as described, it must promptly report and describe such departures to the appropriate Service Field Office.
- b. The action agency must provide the results of any surveys for the northern long-eared bat to the appropriate Service Field Office within their jurisdiction.
- c. Parties finding a dead, injured, or sick northern long-eared bat must promptly notify the appropriate Service Field Office.

If a Federal action agency chooses not to follow this framework, standard section 7 consultation procedures will apply.

Section 7(a)(1) of the Act directs Federal agencies, in consultation with and with the assistance of the Secretary (a function delegated to the Service), to utilize their authorities to further the purposes of the Act by carrying out conservation programs for the benefit of endangered and threatened species. Service Headquarters provides to federal action agencies who choose to implement the framework described above several conservation recommendations for exercising their 7(a)(1) responsibility in this context. Conservation recommendations are discretionary federal agency activities to minimize or avoid adverse effects of a proposed action on listed species or critical habitat, to help implement recovery plans, or to develop information. Service Headquarters recommends that the following conservation measures to all Federal agencies whose actions may affect the northern long-eared bat:


- 1. Perform northern long-eared bat surveys according to the most recent Range-wide Indiana Bat/ northern long-eared bat Summer Survey Guidelines. Benefits from agencies voluntarily performing northern long-eared bat surveys include:
 - a. Surveys will help federal agencies meet their responsibilities under section 7(a)(1) of the Act. The Service and partners will use the survey data to better understand habitat use and distribution of northern long-eared bats, track the status of the species, evaluate threats and impacts, and develop effective conservation and recovery actions. Active participation of federal agencies in survey efforts will lead to a more effective conservation strategy for the northern long-eared bat.
 - b. Should the Service reclassify the species as endangered in the future, an agency with a good understanding of how the species uses habitat based on surveys within its action areas could inform greater flexibility under section 7(a)(2) of the Act. Such information could facilitate an expedited consultation and incidental take statement that may, for example, exempt taking associated with tree removal during the active season, but outside of the pup season, in known occupied habitat.


- 2. Apply additional voluntary conservation measures, where appropriate, to reduce the impacts of activities on northern long-eared bats. Conservation measures include:
 - a. Conduct tree removal activities outside of the northern long-eared bat pup season (June 1 to July 31) and/or the active season (April 1 to October 31). This will minimize impacts to pups at roosts not yet identified.
 - b. Avoid clearing suitable spring staging and fall swarming habitat within a 5-mile radius of known or assumed northern long-eared bat hibernacula during the staging and swarming seasons (April 1 to May 15 and August 15 to November 14, respectively).
 - c. Manage forests to ensure a continual supply of snags and other suitable maternity roost trees.
 - d. Conduct prescribed burns outside of the pup season (June 1 to July 31) and/or the active season (April 1 to October 31). Avoid high-intensity burns (causing tree scorch higher than northern long-eared bat roosting heights) during the summer maternity season to minimize direct impacts to northern long-eared bat.
 - e. Perform any bridge repair, retrofit, maintenance, and/or rehabilitation work outside of the northern long-eared bat active season (April 1 to October 31) in areas where northern long-eared bats are known to roost on bridges or where such use is likely.
 - f. Do not use military smoke and obscurants within forested suitable northern longeared bat habitat during the pup season (June 1 to July 31) and/or the active season (April 1 to October 31).
 - g. Minimize use of herbicides and pesticides. If necessary, spot treatment is preferred over aerial application.
 - h. Evaluate the use of outdoor lighting during the active season and seek to minimize light pollution by angling lights downward or via other light minimization measures.
 - i. Participate in actions to manage and reduce the impacts of white-nose syndrome on northern long-eared bat. Actions needed to investigate and manage white-nose syndrome are described in a national plan the Service developed in coordination with other state and federal.

7

APPENDIX B DELINEATED RESOURCE MAPS

APPENDIX C WETLAND, FUNCTIONS & VALUES, UPLAND, AND STREAM DATASHEETS

Project/Site: Lilly Run	City/County: Harford County	Sampling Date: 03/27/19
Applicant/Owner: Maryland Transportation Authority	State:	MD Sampling Point: WET 01
Investigator(s): L. Snyder, M. McCormick	Section, Township, Range:	
Landform (hillslope, terrace, etc.): Depression	Local relief (concave, convex, none):	Concave Slope (%): 0 - 1
Subregion (LRR or MLRA):149A	Lat:76.098535 Long:	
Soil Map Unit Name: Ot – Othello silt loams, 0 to 2 percent	slopes	NWI classification: PEM
Are climatic/hydrologic conditions on the site typical for this time	ne of year? Yes 🔽 No ▮	(If no, explain in Remarks.)
Are Vegetation Soil or Hydrology s	significantly disturbed? Are "Normal Cir	cumstances" present? Yes 🔽 No 🔲
Are Vegetation Soil or Hydrology r	naturally problematic? (If needed, expla	in any answers in Remarks.)
SUMMARY OF FINDINGS – Attach site map sho	wing sampling point locations	transects, important features, etc.
Hydrophytic Vegetation Present? Yes ▼ N	o [C]	
Hydric Soil Present? Yes V	Is the Sampled Area	Yes 🔽 No □
Wetland Hydrology Present? Yes ▼ N	⊙ ∏ Within a Wetland?	
Remarks: Low quality wetland fed by rainfall/upland runoff. Little to no ve Photo WET 1: SW	egetation present. Hay present in wetland	
HYDROLOGY		
Wetland Hydrology Indicators:		Secondary Indicators (minimum of two required)
Primary Indicators (minimum of one is required; check all that	apply)	Surface Soil Cracks (B6)
	ic Fauna (B13)	Sparsely Vegetated Concave Surface (B8)
	Deposits (B15) (LLR U)	Drainage Patterns (B10)
	gen Sulfide Odor (C1) zed Rhizospheres on Living Roots (C3)	Moss Trim Lines (B16) Dry-Season Water Table (C2)
	nce of Reduced Iron (C4)	Crayfish Burrows (C8)
	nt Iron Reduction in Tilled Soils (C6)	Saturation Visible on Aerial Imagery (C9)
	Muck Surface (C7)	Geomorphic Position (D2)
☐ Iron Deposits (B5) ☐ Other	(Explain in Remarks)	Shallow Aquitard (D3)
Inundation Visible on Aerial Imagery (B7)		FAC-Neutral Test (D5)
▼ Water-Stained Leaves (B9)		Sphagnum moss (D8)(LRR T, U)
Field Observations:		
Surface Water Present? Yes ▼ No □ Dep	th (inches):1-4"	
Water Table Present? Yes ▼ No □ Dep	th (inches): <u>Surface</u>	
	th (inches): <u>Surface</u> Wetland Hyd	rology Present? Yes 🔽 No 🗀
(includes capillary fringe) Describe Recorded Data (stream gauge, monitoring well, aeria	al photos, previous inspections), if availab	le:
Remarks:		

VEGETATION	(Four Strata) -	 Use scientific nan 	nes of plants.

% Cover_	Species?	Indicator Status	Dominance Test Worksheet:		
			Number of Dominant Species That Are OBL, FACW, or FAC:	1	(A)
			Total Number of Dominant Species Across All Strata:	1	(B)
			Percent of Dominant Species That Are OBL, FACW, or FAC:	100%	(A/B)
			Prevalence Index Worksheet:		
	Total Cover			Multiply by	,-
			Hydrophytic Vegetation Indic	ators:	
					atation
	Total Cover				ialioi
	o or total cover.			_	,1
50	Ves	OBI	i robiematie riyaropriya	-	xplain
40			¹ Indicators of hydric soil and wet	land hydrolc	nav .
-		OBL			
			Definitions of Four Vegetation	Strata:	
				t height (DB	iΗ),
			regardless of fleight.		
			Sapling/Shrub – Woody plants,	excluding vi	ines,
				:han 3.28 ft ((1m)
			tan.		
			, ,	ants less tha	an
			3.20 it tall.		
3020%	of total cover:	12	, ,	reater than	3.28 f
)			in neight.		
			Hydrophytic		
			Vegetation		
20%	% of total cover:		Present? Yes	No	
ons below).					
	209	= Total Cover 20% of total cover:	= Total Cover = Total Co	That Are OBL, FACW, or FAC: Total Number of Dominant Species Across All Strata: Percent of Dominant Species That Are OBL, FACW, or FAC: Total Cover 20% of total cover: Total Cover	That Are OBL, FACW, or FAC: Total Number of Dominant 1 Species Across All Strata: 1 Percent of Dominant Species 100% That Are OBL, FACW, or FAC: 100% That Are OBL, FACW, or FACW

WET 01

SOIL Sampling Point: WET 01

Profil	le Descri	iption: (Describe to	the depth	needed t	to docume	nt the inc	dicator or c	onfirm the a	absence	of indicator	s.)			
D	epth	Matrix			Re	dox Feat	ures							
_(in	ches)	Color (moist)	<u>%</u>	Color ((moist)	%	Type ¹	Loc ²	Tex	ture		Remark	ks	
<u> </u>	0-5	10YR 4/2	60	5YR	4/6	_20_	C	M/PL	Lo	am				
		10YR 5/2	20											
	5+	10YR 6/1	70	10YF	२ ३/३	_20_	C	M	Lo	am				
				5YR	3/4	10	C	M	Lo	am				
¹ Type	e: C=Cor	ncentration, D=Deple	tion, RM=Re	educed M	latrix, MS=f	Masked S	and Grains.		² Locat	ion: PL=Po	re Lining, I	M=Matri	X.	
Hydri	ic Soil In	dicators: (Applicab	le to all LRI	Rs, unles	s otherwis	se noted.))		Indica	tors for Pro	blematic	Hydric 9	Soils ³ :	
	Histosol	(A1)			Polyvalue T,U)	Below Su	urface (S8)	(LRR S,		1 cm Muck ((A9) (LRR)		
	Histic E	pipedon (A2)				Surface	(S9) (LRR S	, T, U)		2 cm Muck ((A10) (LRR	(S)		
	Black H	istic (A3)			Loamy M	ucky Mine	eral (F1) (LR	R O)		Reduced Ve	ertic (F18) (outside	MLRA 1	50A,B)
		en Sulfide (A4)			Loamy GI	-				Piedmont FI				P, S,T)
		d Layers (A5)		~	Depleted					Anomalous	-	my Soils	s (F20)	
	-	Bodies (A6) (LRR P,			Redox Da		` ,			(MLRA 153E Red Parent		E3)		
		ucky Mineral (A7) (LF resence (A8) (LRR U)			Depleted Redox De					Very Shallo	`	,	=12\ (I R	P T III
		uck (A9) (LLR P, T)	'		Marl (F10)	•	3 (1 0)			Other (Expla		,	12) (LI X	1,0)
		d Below Dark Surfac	e (A11)				11) (MLRA	151)	-	(=/.p.				
		ark Surface (A12)	,		•	,		, (LRR O, P, ⁻	T)	³ Indicator	s of hydrop	hvtic ve	egetation	and
	Coast P	rairie Redox (A16) (N	/ILRA 150A)		Umbric S	urface (F1	(13) (LRR P ,	T, U)			hydrology	•	-	
	Sandy N	/lucky Mineral (S1) (L	LR O, S)		Delta Och	ric (F17)	(MLRA 151)				s disturbe			
	Sandy C	Gleyed Matrix (S4)			Reduced	Vertic (F1	8) (MLRA 1	50A, 150B)						
	Sandy F	Redox (S5)			Piedmont	Floodplai	in Soils (F19	9) (MLRA 14 9	9A)					
	Stripped	l Matrix (S6)			Anomalou	ıs Bright L	₋oamy Soils	(F20) (MLR	A 149A, 1	53C, 153D)				
	Dark Su	rface (S7) (LRR P, S	, T, U)											
Restr	rictive La	ayer (if observed):												
	/pe:													
De	epth (incl	nes):						Hydi	ric Soil P	resent?	Yes	~	No	
Rema	arks:													

Project/Site: Lilly Run	City/County: Harford County	Sampling Date: 03/27/19
Applicant/Owner: Maryland Transportation Authority	· · · · · · · · · · · · · · · · · · ·	MD Sampling Point: WET 02
Investigator(s): L. Snyder, M. McCormick	Section, Township, Range:	
Landform (hillslope, terrace, etc.): Depression		Concave Slope (%): 0 - 2
Subregion (LRR or MLRA): 149A	Lat: -79.098371 Long:	39.549500 Datum: NAD 83
Soil Map Unit Name: HcA – Hatboro-Codorus complex, 0 to	3 percent slopes	NWI classification: PEM
Are climatic/hydrologic conditions on the site typical for this tim	ne of year? Yes 🔽 No 🖡	(If no, explain in Remarks.)
Are Vegetation Soil or Hydrology s	ignificantly disturbed? Are "Normal Cir	cumstances" present? Yes 🔽 No 🔲
Are Vegetation Soil or Hydrology n	aturally problematic? (If needed, expla	in any answers in Remarks.)
SUMMARY OF FINDINGS – Attach site map sho	wing sampling point locations,	transects, important features, etc.
Hydrophytic Vegetation Present? Yes ✓ No		
Hydric Soil Present? Yes ✓ No	Is the Sampled Area	Yes 🔽 No 🔲
Wetland Hydrology Present? Yes ✓ No	⊙ ☐ Within a Wetland?	
Remarks: Wetland is fed by pipe that is draining adjacent sports complex and WET 02A have the same vegetation, hydrology, and soils.		ives hydrology the same way as WET 02. WET 02
HYDROLOGY		
Wetland Hydrology Indicators:		Secondary Indicators (minimum of two required)
Primary Indicators (minimum of one is required; check all that a		Surface Soil Cracks (B6)
, ,	ic Fauna (B13)	Sparsely Vegetated Concave Surface (B8)
	Deposits (B15) (LLR U) gen Sulfide Odor (C1)	Drainage Patterns (B10) Moss Trim Lines (B16)
	red Rhizospheres on Living Roots (C3)	Dry-Season Water Table (C2)
	nce of Reduced Iron (C4)	Crayfish Burrows (C8)
☐ Drift Deposits (B3) ☐ Recer	nt Iron Reduction in Tilled Soils (C6)	Saturation Visible on Aerial Imagery (C9)
Algal Mat or Crust (B4)	/luck Surface (C7)	Geomorphic Position (D2)
	(Explain in Remarks)	Shallow Aquitard (D3)
Inundation Visible on Aerial Imagery (B7)		FAC-Neutral Test (D5)
Water-Stained Leaves (B9)		Sphagnum moss (D8)(LRR T, U)
Field Observations:		
	th (inches):0.5"	
	h (inches): <u>Surface</u>	
Saturation Present? Yes V No Dept (includes capillary fringe)	th (inches): <u>Surface</u> Wetland Hyd	rology Present? Yes ✓ No
Describe Recorded Data (stream gauge, monitoring well, aeria	al photos, previous inspections), if availab	le:
Remarks:		
Wetlands are designed facilities.		

VECETATION	(Eaur Ctrata)	Lloo	aaiantifia	namaa	of n	lanta
VEGETATION (rour Strata)	Use	scientilic	names	OI D	iants.

Tree Stratum (Plot size: 30')	Absolute % Cover	Dominant Species?	Indicator Status	Dominance Test Worksheet:		
1Taxodium distichum	30	Yes	OBL	Number of Dominant Species	4	(A)
2				That Are OBL, FACW, or FAC:		(^)
3				Total Number of Dominant	4	(B)
4				Species Across All Strata:		
5				Percent of Dominant Species	100%	(A/B)
6				That Are OBL, FACW, or FAC:		
7				Duranda na a la day Mankahaati		
8				Prevalence Index Worksheet:		
E09/ of total cover:		Total Cover 6 of total cover:	6		Multiply by	
50% of total cover:		% Of total cover.	6	OBL species x1= FACW species x2=		
1 2				FACU species x4=		
3.				UPL species x5=		
4.				Column Totals: (A)		
5				Prevalence Index = B/A =		
6				Hydrophytic Vegetation Indica	ators:	
7				X 1 - Rapid Test for Hydro		otation
8		Total Cover		X 2 - Dominance Test is >		Station
50% of total cover:		% of total cover:	5	3 - Prevalence Index is		
Herb Stratum (Plot size: 30'		or total dovoi.		Problematic Hydrophytic		n ¹
1. Juncus effusus	_	Yes	OBL		-	xplain)
2. Typha latifolia	15	Yes	OBL	¹ Indicators of hydric soil and wetl		
3. Phragmites australis	5	Yes	FACW	must be present, unless disturbed	d or probler	matic.
4				Definitions of Four Vegetation	Strata:	
5				Tree – Woody plants, excluding		
6				cm) or more in diameter at breas regardless of height.	t height (DE	3H),
7				regardless of fielgrit.		
8				Sapling/Shrub – Woody plants,		
9.				less than 3 in. DBH and greater t tall.	nan 3.28 π	(1m)
10.						
11.				Herb – All herbaceous (non-wood regardless of size, and woody plants)		an
12				3.28 ft tall.	11115 ICSS II I	all
50% of total cover:		Total Cover of total cover:	_	Woody vine – All woody vines g	raatar than	2 20 #
50% of total cover:)	or total cover.	5	in height.	reater than	3.28 II
2.						
3						
4						
5				Hydrophytic		
		Total Cover		Vegetation		
50% of total cover:	20%	% of total cover:		Present? Yes	No	
Remarks: (If observed, list morphological adaptation	ons below).					

Wet 02

SOIL Sampling Point: WET 02

Profile Descri	ption: (Describe t	to the depth i	needed 1	to docume	ent the ind	dicator or c	onfirm the a	absenc	e of indicato	rs.)			
Depth	Matrix			Re	edox Feat	ures							
(inches)	Color (moist)	<u>%</u>	Color ((moist)	%	Type ¹	Loc ²	T	exture		Remarl	ks	
0-6	10YR 3/1	80	7.5YF	R 3/4	_20_	C	M	I	_oam				
6+	10YR 3/1	85	10YF	₹ 3/6	15	C	M	I	_oam				
¹ Type: C=Con	centration, D=Depl	etion, RM=Re	duced M	latrix, MS=	Masked S	and Grains.			cation: PL=Po				
	dicators: (Applicat	ble to all LRR	s, unles	s otherwis	se noted.)) urface (S8)	(I DD S	Indi	cators for Pr		-	Soils 3:	
Histosol				T,U)	e below 3	uriace (30)	(LIXIX 3,		1 cm Muck	(A9) (LRR	O)		
	pipedon (A2)					(S9) (LRR S			2 cm Muck	, , ,	-		
Black Hi	, ,			•	•	eral (F1) (LR	R O)		Reduced V				
	n Sulfide (A4) I Layers (A5)			•	leyed Mat Matrix (F3				Piedmont F Anomalous				P, S, I)
<u> </u>	Bodies (A6) (LRR P	P. T. U)	~		ark Surfac				(MLRA 153	-	illy Solis	5 (1 20)	
	cky Mineral (A7) (L				Dark Surf				Red Parent	-	ΓF2)		
<u> </u>	esence (A8) (LRR U				epressions				Very Shallo	w Dark Su	rface (TI	F12) (LR	R T,U)
☐ 1 cm Mu	ck (A9) (LLR P, T)			Marl (F10) (LRR U)				Other (Expl	ain in Rem	arks)		
Depleted	d Below Dark Surfac	ce (A11)		Depleted	Ochric (F	11) (MLRA	151)						
Thick Da	ark Surface (A12)			Iron-Man	ganese M	asses (F12)	(LRR O, P, 1	Γ)	³ Indicato	rs of hydrop	ohytic ve	egetation	and
Coast Pr	rairie Redox (A16) (MLRA 150A)		Umbric S	urface (F1	(13) (LRR P ,	T, U)		wetlan	d hydrolog	y must b	e presei	nt,
Sandy M	lucky Mineral (S1) (LLR O, S)		Delta Och	hric (F17)	(MLRA 151)			Unle	ss disturbe	d or pro	blematic	:
	leyed Matrix (S4)				,	8) (MLRA 1							
	edox (S5)				•	•	9) (MLRA 149	-					
	Matrix (S6)			Anomaloi	us Bright I	oamy Soils	(F20) (MLR /	A 149A,	, 153C, 153D)				
	face (S7) (LRR P, S	3, T, U)											
	yer (if observed):												
Type: Depth (inch	100).						Llvd	ric Sail	Present?	Yes		No	
Deptii (iiicii							пуш	1C 3011	rieseiit	165		INO	
Remarks:													

Project/Site: Lilly Run	City/County: Harford County	Sampling Date: 03/27/19
Applicant/Owner: Maryland Transportation Authority	State:	MD Sampling Point: WET 03
Investigator(s): L. Snyder, M. McCormick	Section, Township, Range:	
Landform (hillslope, terrace, etc.):	Local relief (concave, convex, none):	<u>Concave</u> Slope (%): <u>0 - 3</u>
Subregion (LRR or MLRA): 149A	Lat:76.098512 Long:	39.549650 Datum: NAD 83
Soil Map Unit Name: HcA – Hatboro-Codorus complex, 0	to 3 percent slopes	NWI classification: PEM
Are climatic/hydrologic conditions on the site typical for this	me of year? Yes 🔽 No	(If no, explain in Remarks.)
Are Vegetation Soil or Hydrology	significantly disturbed? Are "Normal Ci	rcumstances" present? Yes 🔽 No 🔲
Are Vegetation Soil or Hydrology	naturally problematic? (If needed, explain	ain any answers in Remarks.)
SUMMARY OF FINDINGS – Attach site map sh	owing sampling point locations	, transects, important features, etc.
Hydrophytic Vegetation Present? Yes ▼	No 🔲	
Hydric Soil Present? Yes ✓	No III Is the Sampled Area	Yes 🔽 No 🔲
Wetland Hydrology Present? Yes ✓	No Within a Wetland?	
Wetland receives hydrology from upland runoff from adjace wetland.	t hillslope/train tracks. Phragmites present	in wetland next to WUS 03. Moderate quality
HYDROLOGY		
Wetland Hydrology Indicators:		Secondary Indicators (minimum of two required)
Primary Indicators (minimum of one is required; check all th		Surface Soil Cracks (B6)
	atic Fauna (B13) Deposits (B15) (LLR U)	☐ Sparsely Vegetated Concave Surface (B8)✓ Drainage Patterns (B10)
	rogen Sulfide Odor (C1)	Moss Trim Lines (B16)
	lized Rhizospheres on Living Roots (C3)	☐ Dry-Season Water Table (C2)
	sence of Reduced Iron (C4)	Crayfish Burrows (C8)
□ Drift Deposits (B3) □ Re	ent Iron Reduction in Tilled Soils (C6)	Saturation Visible on Aerial Imagery (C9)
	Muck Surface (C7)	Geomorphic Position (D2)
	er (Explain in Remarks)	Shallow Aquitard (D3)
Inundation Visible on Aerial Imagery (B7)		FAC-Neutral Test (D5)
▼ Water-Stained Leaves (B9)		Sphagnum moss (D8)(LRR T, U)
Field Observations:		
	pth (inches):0.5"	
	pth (inches): <u>Surface</u>	
Saturation Present? Yes Ve No De Cincludes capillary fringe)	pth (inches): <u>Surface</u> Wetland Hyd	drology Present? Yes ✓ No
Describe Recorded Data (stream gauge, monitoring well, ac	rial photos, previous inspections), if availal	ole:
Remarks:		

VEGETATION	(Four Strata) -	 Use scientific nan 	nes of plants.

Free Stratum (Plot size:30')	Absolute <u>% Cover</u>	Dominant Species?	Indicator Status	Dominance Test Worksheet:		
1. Acer negundo 2.		Yes	FAC_	Number of Dominant Species That Are OBL, FACW, or FAC:	2	(A)
3.				Total Number of Dominant Species Across All Strata:	2	- (B)
i				Percent of Dominant Species That Are OBL, FACW, or FAC:	100%	- (A/B
5				11101110 052,171011, 011710.		-
: :				Prevalence Index Worksheet:		
•		Total Cover		Total % Cover of:	Multiply b	v:
50% of total cover:		% of total cover:	5	OBL species x1=		
apling/Shrub Stratum (Plot size: 30'						
•					:	
					:	
				Column Totals: (A)		
				Prevalence Index = B/A =		
·				Hydrophytic Vegetation Indic	ators:	
				1 - Rapid Test for Hydro	ophytic Veg	getatio
	=	Total Cover		X 2 - Dominance Test is > 50%		
50% of total cover:	20%	% of total cover:		3 - Prevalence Index is ≤ 3.0 ¹		
erb Stratum (Plot size:30' 1Phragmites australis) 60	Yes	FACW	Problematic Hydrophytic Vegetation ¹ (Explai		
2. Rosa multiflora	10	No	FACU	¹ Indicators of hydric soil and wet	land hydrol	logy
3. Juncus effusus	10	No No	OBL	must be present, unless disturbe	ed or proble	matic
4. Clover sp.	5	No	NA	Definitions of Four Vegetation	Strata:	
5 6				Tree – Woody plants, excluding cm) or more in diameter at breas		
7				regardless of height.		
8 9				Sapling/Shrub – Woody plants, less than 3 in. DBH and greater	excluding v	vines, t (1m)
0				tall.		
1 2				Herb – All herbaceous (non-wood regardless of size, and woody pl		
	85=	 Total Cover 		3.28 ft tall.		
50% of total cover:(Plot size:	<u>42.5</u> 20%	of total cover:	17	Woody vine – All woody vines g in height.	reater than	า 3.28
1						
2						
3						
4						
5		Total Cover		Hydrophytic		
50% of total cover:		% of total cover:		Vegetation Present? Yes ✓	No	
30 % Of total cover.		o or total cover.		1 16361IL: 163 Y	No	Ш
Remarks: (If observed, list morphological adaptation	ne helow)					
tomarko. (ii oboci vea, not morphological adaptatic	nio belowj.					

WET 03

Sampling Point: WET 03

c	$\boldsymbol{\smallfrown}$	ı	
J	v	ı	L

Profile Descri	ption: (Describe	to the depth	needed	to docum	ent the inc	dicator or co	onfirm the a	bsenc	e of indicator	rs.)			
Depth	Matrix			R	edox Feat	ures							
(inches)	Color (moist)	%	Color	(moist)	%	Type ¹	Loc ²	T	exture		Remar	ks	
0-12	10YR 3/1	85	10Y	R 3/6	15	C	M	Cla	ay loam	-			
						-							
1- 0.0								2.					
	ncentration, D=Dep								cation: PL=Po				
Histosol	dicators: (Applica (A1)	DIE 10 AII LKI	ks, unie:	Polyvalu T,U)	e Below S) urface (S8) (LRR S,		1 cm Muck		•		
☐ Histic Ep	pipedon (A2)				k Surface	(S9) (LRR S,	T, U)		2 cm Muck	(A10) (LRR	S)		
☐ Black Hi	stic (A3)			Loamy N	lucky Mine	eral (F1) (LRI	R O)		Reduced Ve	ertic (F18) (outside	MLRA 1	50A,B)
	en Sulfide (A4)			-	Sleyed Mat				Piedmont Fl				P, S,T)
	d Layers (A5)	···		•	d Matrix (F	,			Anomalous	-	my Soils	s (F20)	
	Bodies (A6) (LRR I ucky Mineral (A7) (L				ark Surfac Dark Surf				(MLRA 153E Red Parent	•	F2)		
<u> </u>	esence (A8) (LRR				epression:				Very Shallo	,	•	F12) (LR	R T,U)
	ıck (A9) (LLR P, T)	•			0) (LRR U)	, ,			Other (Expla			, ,	. ,
☐ Depleted	d Below Dark Surfa	ce (A11)		Depleted	d Ochric (F	11) (MLRA 1	51)						
	ark Surface (A12)				-		(LRR O, P, T)	³ Indicator	s of hydrop	hytic ve	egetation	n and
P-1	rairie Redox (A16)				,	13) (LRR P, T	', U)			d hydrology			
	Mucky Mineral (S1) Bleyed Matrix (S4)	(LLR U, S)			, ,	(MLRA 151) 8) (MLRA 15	50Δ 150B)		Unles	ss disturbe	d or pro	blematic	;
	Redox (S5)				•	, .) (MLRA 149	A)					
	Matrix (S6)			Anomalo	ous Bright I	oamy Soils	(F20) (MLRA	149A	153C, 153D)				
Dark Su	rface (S7) (LRR P,	S, T, U)											
Restrictive La	yer (if observed):												
Туре:													
Depth (inch	nes):			-			Hydri	c Soil	Present?	Yes	~	No	
Remarks:							I						

Project/Site: Lilly Run	City/County: Harford County	Sampling Date: 03/27/19
Applicant/Owner: Maryland Transportation Authority	State:	MD Sampling Point: UPL 01
Investigator(s): L. Snyder, M. McCormick	Section, Township, Range:	
Landform (hillslope, terrace, etc.): _ Terrace	Local relief (concave, convex, none):	None Slope (%): _ 0 - 5
Subregion (LRR or MLRA): 149A	Lat: -76.098413 Long	: 39.545999 Datum: NAD 83
Soil Map Unit Name: Ot – Othello silt loams, 0 to 2 perce	nt	NWI classification: Upland
Are climatic/hydrologic conditions on the site typical for this	time of year? Yes ✓ No	(If no, explain in Remarks.)
Are Vegetation Soil or Hydrology		circumstances" present? Yes ✓ No
Are Vegetation Soil or Hydrology	naturally problematic? (If needed, exp	lain any answers in Remarks.)
SUMMARY OF FINDINGS – Attach site map si	nowing sampling point locations	s, transects, important features, etc.
Hydrophytic Vegetation Present? Yes	No 🔽	
Hydric Soil Present? Yes	No Is the Sampled Area	Yes No ▼
Wetland Hydrology Present? Yes □	No Within a Wetland?	
Remarks:		
HYDROLOGY		
Wetland Hydrology Indicators:		Secondary Indicators (minimum of two required)
Primary Indicators (minimum of one is required; check all tr		Surface Soil Cracks (B6)
	uatic Fauna (B13)	Sparsely Vegetated Concave Surface (B8)
	ri Deposits (B15) (LLR U) drogen Sulfide Odor (C1)	☐ Drainage Patterns (B10) ☐ Moss Trim Lines (B16)
	dized Rhizospheres on Living Roots (C3)	Moss Trim Lines (B16) Dry-Season Water Table (C2)
	sence of Reduced Iron (C4)	Crayfish Burrows (C8)
	cent Iron Reduction in Tilled Soils (C6)	Saturation Visible on Aerial Imagery (C9)
Algal Mat or Crust (B4)	n Muck Surface (C7)	Geomorphic Position (D2)
☐ Iron Deposits (B5) ☐ Otl	er (Explain in Remarks)	Shallow Aquitard (D3)
Inundation Visible on Aerial Imagery (B7)		FAC-Neutral Test (D5)
Water-Stained Leaves (B9)		Sphagnum moss (D8)(LRR T, U)
Field Observations:		
Surface Water Present? Yes ☐ No 🔽 D	epth (inches):	
Water Table Present? Yes ☐ No ☑ D	epth (inches):	
(includes capillary fringe)	. , ,	drology Present? Yes No 🔽
Describe Recorded Data (stream gauge, monitoring well, a	erial photos, previous inspections), if availa	ible:
Remarks:		

VEGETATION ((Four Strata) -	Lise scientific	names of	nlante
VEGETATION	iroui Silaia) –	USE SCIENTING	Hallies UI	Dialito.

	Absolute % Cover	Dominant Species?	Indicator Status	Dominance Test Worksheet:		
				Number of Dominant Species That Are OBL, FACW, or FAC:	0	(A)
				Total Number of Dominant Species Across All Strata:	1	(B)
				Percent of Dominant Species That Are OBL, FACW, or FAC:	0%	(A/E
				That Are OBL, FACW, or FAC.		
				Prevalence Index Worksheet:		
		= Total Cover		Total % Cover of:	Multiply by	
50% of total cover:		20% of total cover:		OBL species x1=		
pling/Shrub Stratum (Plot size: 30'					:	
				FAC species x3=		
					·	
					·	
	_			Column Totals: (A)		_ (E
				Prevalence Index = B/A =		-
				Hydrophytic Vegetation Indic	ators:	
				1 - Rapid Test for Hydro	phytic Vege	tatio
		= Total Cover		2 - Dominance Test is >	50%	
50% of total cover: _	2	20% of total cover:		3 - Prevalence Index is	≤ 3.0 ¹	
rb Stratum (Plot size: 30'	40	Yes	NA	Problematic Hydrophyti	-	ı ¹ (plai:
Alliana aska aska aska anna		Yes	FACU	¹ Indicators of hydric soil and we	land hydrolc	av
Trife lives an		No	NA NA	must be present, unless disturbe		
Diantaria la pasalata		No No	FACU	Definitions of Four Vegetation	Strata:	
. Prantago ianceolata . Taraxacum officinale		No	FACU			7.0
				Tree – Woody plants, excluding cm) or more in diameter at breas regardless of height.		
				Sapling/Shrub – Woody plants, less than 3 in. DBH and greater tall.		
				Herb – All herbaceous (non-wooregardless of size, and woody pl	dy) plants,	an
-					ants less tha	
	70	= Total Cover		3.28 ft tall.	ants less tha	
50% of total cover:	35 20	0% of total cover:	14		ants less tha	3.28
50% of total cover:	35 20)	0% of total cover:	14	3.28 ft tall. Woody vine – All woody vines g	ants less tha	3.28
50% of total cover: body Vine Stratum (Plot size:30'	35 20	0% of total cover:	14	3.28 ft tall. Woody vine – All woody vines g	ants less tha	3.28
50% of total cover:	35 20)	0% of total cover:	14	3.28 ft tall. Woody vine – All woody vines g	ants less tha	3.28
50% of total cover:	35 20)	0% of total cover:	14	3.28 ft tall. Woody vine – All woody vines g	ants less tha	3.28
oody Vine Stratum (Plot size: 30'	35 20)	0% of total cover:		3.28 ft tall. Woody vine – All woody vines gin height. Hydrophytic	ants less tha	3.28
50% of total cover:	35 20	0% of total cover:		3.28 ft tall. Woody vine – All woody vines gin height.	ants less tha	3.28

UPL 01

SOIL Sampling Point: UPL 01

Depth	ption: (Describe t Matrix	o the depth i	needed		ent the in		onfirm the a	bsenc	e of indicato	ors.)				
•	Color						. 2	_			_			
(inches)	(moist)		Color ((moist)		Type ¹	Loc ²		exture		Remark	ks		
0-15	10YR 3/3	100							Loam					
							-							
					-									
¹ Type: C=Cor	 ncentration, D=Deple	etion RM=Re	duced N	 Matrix MS=I	——— Masked S	and Grains		2 _{l 00}	cation: PL=P	ore Lining	——— M=Matri	ix		
	dicators: (Applicat								cators for Pr					
Histosol						urface (S8) (· · · · · · · · · · · · · · · · · · ·							
☐ Histic Ep	oipedon (A2)				Surface	(S9) (LRR S	, T, U)		2 cm Muck	(A10) (LRR	l S)			
□ Black Hi	stic (A3)			Loamy M	ucky Mine	eral (F1) (LR	R 0)		Reduced V	ertic (F18) (outside	MLRA 1	50A,B)	
	n Sulfide (A4)			Loamy GI	-					Floodplain S			P, S,T)	
	d Layers (A5)			Depleted	•	•				Bright Loa	my Soils	s (F20)		
	Bodies (A6) (LRR Particle) (A7) (LF			Redox Da Depleted		. ,			(MLRA 153	в) t Material (Т	(E3)			
	esence (A8) (LRR U			Redox De		, ,				•	,	F12) (LR	R T.U)	
	ick (A9) (LLR P, T)	,		Marl (F10	•	, ,			-		Dark Surface (TF12) (LRR T,U) n in Remarks)			
☐ Depleted	d Below Dark Surfac	e (A11)		Depleted	Ochric (F	11) (MLRA 1	151)							
Thick Da	ark Surface (A12)			Iron-Manç	ganese M	asses (F12)	(LRR O, P, T)	³ Indicato	rs of hydrop	hytic ve	getation	n and	
	rairie Redox (A16) (I					13) (LRR P, 1	Γ, U)		wetlan	d hydrology	/ must b	e preser	nt,	
<u> </u>	lucky Mineral (S1) (I	LLR O, S)			, ,	(MLRA 151)	50A 450D)		Unle	ess disturbe	d or prol	blematic	;	
	Bleyed Matrix (S4) Redox (S5)				•	18) (MLRA 1 9 in Soils (F19	9) (MLRA 149.	Δ)						
	Matrix (S6)								, 153C, 153D)					
	rface (S7) (LRR P, S	i, T, U)	,		3	,	, .		, , ,					
Restrictive La	yer (if observed):													
Type:	,													
Depth (inch	nes):			-			Hydri	c Soil	Present?	Yes		No	~	
Remarks:														

Project/Site: Lilly Run		City/County:	Harford County	Sampling Date: 03/27/19						
Applicant/Owner: Maryland Transportation	on Authority	_ , , ,		MD Sampling Point: UPL 02						
Investigator(s): L. Snyder, M. McCormick	-	Section, Towns								
Landform (hillslope, terrace, etc.): Hillslo			Local relief (concave, convex, none): None Slope (%): 0 - 5							
Subregion (LRR or MLRA): 149A		 Lat: -76.098	, =	39.458974 Datum: NAD 83						
Soil Map Unit Name: HcA – Hatboro Co	dorus complex, 0 !	to 3 percent slopes		NWI classification: Upland						
Are climatic/hydrologic conditions on the sit	-			(If no, explain in Remarks.)						
		significantly distur		cumstances" present? Yes ▼ No □						
Are Vegetation Soil or H	ydrology 🔲	naturally problema	atic? (If needed, explai	n any answers in Remarks.)						
SUMMARY OF FINDINGS – Attacl	n site map sho	owing samplir	ng point locations,	transects, important features, etc.						
Hydrophytic Vegetation Present?	Yes □ N	No 🔽								
Hydric Soil Present?	Yes □ N	No 🔽	Is the Sampled Area	Yes □ No ☑						
Wetland Hydrology Present?	Yes □ N	No 🔽	Within a Wetland?							
Remarks:										
	hank whore wetler	ad vogetation was	propert							
Opiand plot was taken close to the stream	Jank where wellar	nd vegetation was	present.							
HYDROLOGY										
Wetland Hydrology Indicators:				Secondary Indicators (minimum of two required)						
Primary Indicators (minimum of one is requ	ired; check all that	t apply)		Surface Soil Cracks (B6)						
Surface Water (A1)	☐ Aqua	atic Fauna (B13)		Sparsely Vegetated Concave Surface (B8)						
High Water Table (A2)	<u></u> :			Drainage Patterns (B10)						
remarks: pland plot was taken close to the stream bank where wetland vegetation was present. Value Value										
	<u></u> :		-							
	* *									
Iron Deposits (B5)	<u></u> :	er (Explain in Rema		Shallow Aquitard (D3)						
Inundation Visible on Aerial Imagery	•	, (Explain in Rome	arrio)	FAC-Neutral Test (D5)						
Water-Stained Leaves (B9)	,			Sphagnum moss (D8)(LRR T, U)						
Field Observations:										
Surface Water Present? Yes	No ☑ Dep	pth (inches):								
Water Table Present? Yes	<u></u>	pth (inches):								
Saturation Present? Yes		pth (inches):	Wetland Hvdr	rology Present? Yes 🔲 No 🔽						
(includes capillary fringe)		·								
Describe Recorded Data (stream gauge, m	onitoring well, aer	rial photos, previou	is inspections), if availabl	e:						
Remarks:				<u>-</u>						
remarks.										

VEGETATION	(Four Strata) -	 Use scientific nan 	nes of plants.

	Absolute	Dominant	Indicator	Dominance Test Worksheet:
ee Stratum (Plot size: 30')	% Cover	Species?	Status	Dominance rest worksheet.
				Number of Dominant Species 2 (A
	_			That Are OBL, FACW, or FAC:
				Total Number of Dominant 4 (E
				Species Across All Strata:
				Percent of Dominant Species 50% (A
				That Are OBL, FACW, or FAC:
	_			
				Prevalence Index Worksheet:
		= Total Cover		Total % Cover of: Multiply by:
50% of total cover:		20% of total cover:		OBL species 2 x1= 2
oling/Shrub Stratum (Plot size: 30')			FACW species 15 x2= 30
Acer rubrum		Yes	FAC	FAC species 60 x3= 180
Alnus serrulata	15	Yes	FACW	FACU species 30 x4= 120
				UPL species 0 x5= 0
				Column Totals: 107 (A) 332
				Prevalence Index = B/A =3.1
				Hydrophytic Vegetation Indicators:
				1 - Rapid Test for Hydrophytic Vegetat
-	- ——— 75	= Total Cover		2 - Dominance Test is > 50%
50% of total cover:		20% of total cover:	15	$3 - \text{Prevalence Index is } \leq 3.0^{1}$
rb Stratum (Plot size: 30'		20 70 01 10101 00 001.		Problematic Hydrophytic Vegetation ¹
Dana multiflara	20	Yes	FACU	(Expla
All!		No	FACU	¹ Indicators of hydric soil and wetland hydrology
Tumba latifalia		No	OBL	must be present, unless disturbed or problemat
			OBL	Definitions of Four Versetation Streets
•				Definitions of Four Vegetation Strata:
·				Tree – Woody plants, excluding vines, 3 in. (7.6 cm) or more in diameter at breast height (DBH).
·	_			regardless of height.
•	_			
·	_			Sapling/Shrub – Woody plants, excluding vines
	_			less than 3 in. DBH and greater than 3.28 ft (1m tall.
•				Herb – All herbaceous (non-woody) plants,
				regardless of size, and woody plants less than 3.28 ft tall.
	27	-		
50% of total cover: _	13.5 20	0% of total cover:	5.4	Woody vine – All woody vines greater than 3.24 in height.
oody Vine Stratum (Plot size: 30')			iii neigiit.
. Lonicera japonica	_ 5	Yes	_FACU_	
·	_			
	_	_		Lhudronhutio
	5	_ = Total Cover		Hydrophytic Vegetation
50% of total cover: _	2.5 2	20% of total cover:	1	Present? Yes No
marks: (If observed, list morphological adaptat	ions below).			

SOIL Sampling Point: UPL 02

Depth	ption: (Describe t Matrix	o the depth i	needed		ent the in		onfirm the a	bsenc	e of indicato	ors.)			
•	Color						. 2	_					
(inches)	(moist)		Color	(moist)		Type ¹	Loc ²		exture		Remark	KS	
0-12	10YR 5/6	100					-		Loam				
								-					
17			-l					21 -					
•	centration, D=Deple dicators: (Applicate								cation: PL=P				
Histosol		DIE LO AII LKK	s, unies	Polyvalue) urface (S8) (LRR S,		1 cm Muck		•		
·	vipedon (A2)			T,U) Thin Dark	Surface	(S9) (LRR S	T II)		2 cm Muck	. , .	-		
Black Hi						eral (F1) (LR			Reduced V			MLRA 1	50A.B)
	n Sulfide (A4)			Loamy GI	-		,		Piedmont F	. , ,			
Stratified	Layers (A5)			Depleted	Matrix (F	3)			Anomalous	Bright Loa	my Soils	(F20)	
Organic	Bodies (A6) (LRR P	, T, U)		Redox Da	ark Surfac	e (F6)			(MLRA 153	B)			
	cky Mineral (A7) (LF			Depleted		, ,		Red Parent Material (TF2) Very Shallow Dark Surface (TF12) (LRR T,U					
	esence (A8) (LRR U)		Redox De	•	, ,			-			=12) (LR	R T,U)
	ck (A9) (LLR P, T) I Below Dark Surfac	·ο (Λ11)		Marl (F10)		11) (MLRA 1	IE4\		Other (Exp	iain in Rem	arks)		
	rk Surface (A12)	C (A11)					(LRR O, P, T	`	³ Indicato	rs of hydror	hytic ve	agetation	and
	airie Redox (A16) (I	MLRA 150A)			_	13) (LRR P , 1		,		d hydrology	-	-	
	lucky Mineral (S1) (I	LLR O, S)		Delta Och	ric (F17)	(MLRA 151)				ss disturbe			
Sandy G	leyed Matrix (S4)			Reduced	Vertic (F	18) (MLRA 1	50A, 150B)						
	edox (S5)) (MLRA 149						
	Matrix (S6)			Anomalous Bright Loamy Soils (F20) (MLRA 149A, 153C, 153D)									
Dark Sui	face (S7) (LRR P, S	i, T, U)					1						
_	yer (if observed):												
Type:	V:						11		. D 40	V	_	NI-	1
Depth (inch	es):						Hydri	ic Soil	Present?	Yes		No	~
Remarks:													

Project/Site: Lilly Run	City/County: Harford County	Sampling Date: 03/27/19
Applicant/Owner: Maryland Transportation Authority	State:	MD Sampling Point: UPL 03
Investigator(s): L. Snyder, M. McCormick	Section, Township, Range:	
Landform (hillslope, terrace, etc.): Toe of slope	Local relief (concave, convex, none):	None Slope (%): 0 - 2
Subregion (LRR or MLRA): 149A	Lat: -76.098888 Long	
Soil Map Unit Name: MlaA – Mattapex silt loam, 0 to 2		NWI classification: Upland
Are climatic/hydrologic conditions on the site typical for the	· · · · · · · · · · · · · · · · · · ·	(If no, explain in Remarks.)
Are Vegetation Soil or Hydrology		ircumstances" present? Yes V No
Are Vegetation Soil or Hydrology		lain any answers in Remarks.)
SUMMARY OF FINDINGS – Attach site map		•
Hydrophytic Vegetation Present? Yes	No 🔽	
Hydric Soil Present? Yes	No Is the Sampled Area	Yes No 🔽
Wetland Hydrology Present?	No Within a Wetland?	
wettand Trydrology Fresent:	140	
HYDROLOGY		
Wetland Hydrology Indicators:		Secondary Indicators (minimum of two required)
Primary Indicators (minimum of one is required; check al	that apply)	Surface Soil Cracks (B6)
Surface Water (A1)	Aquatic Fauna (B13)	Sparsely Vegetated Concave Surface (B8)
High Water Table (A2)	Mari Deposits (B15) (LLR U)	☐ Drainage Patterns (B10)
	Hydrogen Sulfide Odor (C1)	Moss Trim Lines (B16)
	Oxidized Rhizospheres on Living Roots (C3)	Dry-Season Water Table (C2)
	Presence of Reduced Iron (C4)	Crayfish Burrows (C8)
	Recent Iron Reduction in Tilled Soils (C6)	Saturation Visible on Aerial Imagery (C9)
	Γhin Muck Surface (C7) Other (Explain in Remarks)	Geomorphic Position (D2) Shallow Aquitard (D3)
Inundation Visible on Aerial Imagery (B7)	otilei (Expiairi iii Nemarks)	FAC-Neutral Test (D5)
Water-Stained Leaves (B9)		Sphagnum moss (D8)(LRR T, U)
, ,		
Field Observations: Surface Water Present? Yes No	Depth (inches):	
	. , ,	
Water Table Present? Yes □ No ☑	Depth (inches):	
Saturation Present? Yes No V (includes capillary fringe)	Depth (inches): Wetland Hye	drology Present? Yes No
Describe Recorded Data (stream gauge, monitoring well	aerial photos, previous inspections), if availa	ble:
Remarks:		

VEGETATION ((Four Strata)	- Use scientific	names of plants.

Tree Stratum (Plot size:30')	Absolute <u>% Cover</u>	Dominant Species?	Indicator Status	Dominance Test Worksheet:		
. Acer negundo		Yes	FAC	Number of Dominant Species That Are OBL, FACW, or FAC:	1	(A)
				Total Number of Dominant Species Across All Strata:	4	(B)
·				Percent of Dominant Species	25%	– (A/B
·				That Are OBL, FACW, or FAC:		_
				Prevalence Index Worksheet:		
		Total Cover		Total % Cover of:	Multiply b	
50% of total cover:		% of total cover:	5	OBL species x1=	Multiply b	-
apling/Shrub Stratum (Plot size: 30'		o or total cover.				
Ligustrum vulgare		Yes	UPL			
		·				
				Column Totals: (A)		
				Prevalence Index = B/A =		
				Hydrophytic Vegetation Indic	ators:	
				1 - Rapid Test for Hydro		rotatic
·	15 =	Total Cover		2 - Dominance Test is >		getatic
50% of total cover:		6 of total cover:	3	3 - Prevalence Index is		
erb Stratum (Plot size:30'	<u> </u>	o or total cover.		Problematic Hydrophyti		nn ¹
A Line de une le elle e	0.5	Yes	FACU	i resiemate riyarepriya	-	Explai
O D	40	Yes	FACU	¹ Indicators of hydric soil and wet	iand hvdro	loav
3				must be present, unless disturbe		
4				Definitions of Four Vegetation	Strata:	
5				Tree - Woody plants, excluding		
6				cm) or more in diameter at breas regardless of height.	t height (D	BH),
7.	<u> </u>			regardiose of fleight.		
8				Sapling/Shrub – Woody plants,	excluding	vines,
9.	. <u> </u>			less than 3 in. DBH and greater tall.	nan 3.28 π	t (TM)
0				· ·		
1				Herb – All herbaceous (non-woo		
2				regardless of size, and woody pl 3.28 ft tall.	ants less tr	ıan
		Total Cover	_			
50% of total cover:)	of total cover:	7	Woody vine – All woody vines g in height.	reater than	1 3.28
1						
2						
3						
4						
5		Total Cover		Hydrophytic		
50% of total cover:		6 of total cover:		Vegetation Present? Yes	No	~
30 % of total cover.		o or total cover.		riesent:	NO	ı.
Remarks: (If observed, list morphological adaptation	ons helow)					
temarks. (ii observed, list morphological adaptatic	nis below).					

UPL 03

SOIL Sampling Point: UPL 03

Profile Descrip	ption: (Describe t	o the depth	needed	to docume	ent the inc	licator or c	onfirm the a	bsen	ce of indicato	rs.)			
Depth	Matrix			Re	edox Featu	ıres							
(inches)	Color (moist)	%	Color ((moist)	%	Type ¹	Loc ²	Т	exture		Remar	ks	
0-6	10YR 3/3	100							Loam				
6+	10YR 3/3	30	7.5 Y	R 4/6	40	С	М		Loam				
	10YR 5/3	30											
¹ Type: C=Con	centration, D=Deple	etion, RM=Re	educed M	latrix, MS=	Masked S	and Grains.			cation: PL=Po				
Hydric Soil Inc	dicators: (Applicat	ole to all LRF	Rs, unles				(I DD C	Indi	cators for Pr	oblematic	Hydric	Soils ³ :	
Histosol	(A1)			T,U)	e below St	urface (S8)	(LKK 5,		1 cm Muck	(A9) (LRR	O)		
	pipedon (A2)					(S9) (LRR S			2 cm Muck	` , `	•		
Black His				-	-	ral (F1) (LR	R 0)		Reduced V				
	n Sulfide (A4)			-	leyed Mati				Piedmont F				P, S,T)
l <u>:</u> :	l Layers (A5) Bodies (A6) (LRR P	T 11)		•	Matrix (F3 ark Surfac	•		Ш	Anomalous (MLRA 153)	-	illy Solls	S (F2U)	
' ' -	cky Mineral (A7) (LI				Dark Surf	, ,			Red Parent	-	F2)		
l :::::	esence (A8) (LRR U				epressions				Very Shallo			F12) (LR	R T,U)
I <u>L.</u>	ck (A9) (LLR P, T)		П	Marl (F10) (LRR U)	, ,			Other (Expl			, -	
Depleted	Below Dark Surfac	e (A11)		Depleted	Ochric (F	11) (MLRA 1	151)						
Thick Da	ark Surface (A12)			Iron-Man	ganese Ma	asses (F12)	(LRR O, P, 1	Γ)	³ Indicato	rs of hydrop	ohytic ve	egetation	and
Coast Pr	rairie Redox (A16) (I	MLRA 150A)		Umbric S	urface (F1	3) (LRR P ,	T, U)		wetlan	d hydrolog	/ must b	e preser	nt,
1 == :	lucky Mineral (S1) (LLR O, S)				(MLRA 151)			Unle	ss disturbe	d or pro	blematic	
' '	leyed Matrix (S4)				•	8) (MLRA 1	· · · · · ·						
	edox (S5)						9) (MLRA 149 (E20) (ML B		4E2C 4E2D\				
l	Matrix (S6)	· T III		Anomaioi	us brigin L	Juanny Suns	(FZU) (WILKA	4 149A	, 153C, 153D)				
	face (S7) (LRR P, S	, 1, 0)											
	yer (if observed):												
Type: Depth (inch	ies).						Hydr	ic Soi	I Present?	Yes	ш	No	~
Dopur (mon							,						اخار
Remarks:													

Wetland Function-Value Evaluation Form

					Wetland I.D
Total area of wetland Human made?	Is wetland	part of a wildlife corrido	r?	or a "habitat island"?	Latitude Longitude
Adjacent land use		other development	Prepared by: Date		
Dominant wetland systems present Contiguous undeveloped buffer zone present					Wetland Impact: TypeArea
Is the wetland a separate hydraulic system? How many tributaries contribute to the wetland?			Office Field		
Function/Value	Suitability Y / N	Rationale (Reference #)*	Corps manual wetland delineation completed? Y N Comments		
▼ Groundwater Recharge/Discharge					
Floodflow Alteration					
Fish and Shellfish Habitat					
Sediment/Toxicant Retention					
Nutrient Removal					
→ Production Export					
Sediment/Shoreline Stabilization					
₩ Wildlife Habitat					
Recreation					
Educational/Scientific Value					
★ Uniqueness/Heritage					
Visual Quality/Aesthetics					
ES Endangered Species Habitat					
Other					

Notes:

Wetland Function-Value Evaluation Form

			_		Wetland I.D.
Total area of wetland Human made?	Is wetland	part of a wildlife corrido	or?	or a "habitat island"?	Latitude Longitude
Adjacent land use	Prepared by: Date				
Dominant wetland systems present		Wetland Impact: TypeArea			
Is the wetland a separate hydraulic system? How many tributaries contribute to the wetland?_	Wi	ldlife & vegetation diver	Evaluation based on: Office Field Corps manual wetland delineation completed? Y N		
Function/Value	Suitability Y / N	Rationale (Reference #)*	Princij Functi	on(s)/Value(s)	Comments
Groundwater Recharge/Discharge					
Floodflow Alteration					
Fish and Shellfish Habitat					
Sediment/Toxicant Retention					
Nutrient Removal					
→ Production Export					
Sediment/Shoreline Stabilization					
W ildlife Habitat					
Recreation					
Educational/Scientific Value					
★ Uniqueness/Heritage					
Visual Quality/Aesthetics					
ES Endangered Species Habitat					
Other					

Notes: * Refer to backup list of numbered considerations.

Wetland Function-Value Evaluation Form

					Wetland I.D
Total area of wetland Human made?	Is wetland	part of a wildlife corrido	r?	or a "habitat island"?	Latitude Longitude
Adjacent land use		other development	Prepared by: Date		
Dominant wetland systems present Contiguous undeveloped buffer zone present					Wetland Impact: TypeArea
Is the wetland a separate hydraulic system? How many tributaries contribute to the wetland?			Office Field		
Function/Value	Suitability Y / N	Rationale (Reference #)*	Corps manual wetland delineation completed? Y N Comments		
▼ Groundwater Recharge/Discharge					
Floodflow Alteration					
Fish and Shellfish Habitat					
Sediment/Toxicant Retention					
Nutrient Removal					
→ Production Export					
Sediment/Shoreline Stabilization					
₩ Wildlife Habitat					
Recreation					
Educational/Scientific Value					
★ Uniqueness/Heritage					
Visual Quality/Aesthetics					
ES Endangered Species Habitat					
Other					

Notes:

Project: Lilly Run	Date:	03/27/19	Stream ID:	WUS 01	
Staff: MM, LS Flow Type:	Peren	nial 🗵	Intermittent \square	Ephemeral \square	
Flow Direction: Southwest Drains In	ito:	WUS 02			
Fed By: Culvert at the edge of the Study Area	a.				
Bank Height: 1-3' Water Depth:	_2-6	"	Width: 3-5'		
Channel Gradient (%): 2 Bank Stab	oility:	Modera	te		
Avg. Bank Slope: Vertical ☐ 2:1 [3:1 ⊠	4:1 or greater □]	
Mesohabitat: % Run: 80 %	Riffle:	_10	% Pool:		
Substrate: Cobble ⊠ Gravel ⊠ Veg □ Riprap □ Bedrock □		Sand Concrete		ilt ⊠ ck □	
Channel Characteristics: Natural □	Artific	ial 🗆	Man-altered ⊠		
OHWM: Clear, natural line impressed on the line Changes in character of soil Shelving Vegetation matted down, bent, or all Leaf litter disturbed or washed away Sediment deposition Water staining	bsent	□	resence of litter and lestruction of terrestrong resence of wrack line ediment sorting cour fultiple observed/presbrupt change in plan	rial veg.	
Photos? Upstream ⊠ Downstream ⊠					
Connection to Traditional Navigable Waterwa	ay: _	Yes			
Other Comments:					

Project:	Lilly Run		Date:	03/27/1	Stream ID:	WUS 02 (Lilly Run)		
Staff: M	M, LS	Flow Type:	Peren	nial 🗵	Intermittent \square	Ephemeral \square			
Flow Direc	tion: Southwest	Drains Ir	nto:	Outside (of Study Area				
Fed By: _F	Rainfall, Runoff, cont	inues outside o	of the s	tudy area	a. WUS 1, 3, 4, 5.				
Bank Heigh	nt: _3-18'	Water Depth:	4-1	8"	Width:6-15	5′			
Channel G	radient (%): 3	Bank Stak	oility:	Moder	ate				
Avg. Bank	Slope: Vertica	I ⊠ 2:1 [\boxtimes	3:1 ⊠	4:1 or greater □]			
Mesohabit	at: % Run:7	0%	Riffle:	20	% Pool:	_10			
Substrate:	Cobble ⊠ Veg □ Bedrock □	Gravel ⊠ Riprap □		Sar Concre		ilt □ ck □			
Channel Ch	naracteristics: N	atural 🗵	Artific	ial 🗵	Man-altered ⊠				
OHWM:	Clear, natural line in Changes in characte Shelving Vegetation matted Leaf litter disturbed Sediment depositio Water staining	er of soil down, bent, or a l or washed away	bsent		Presence of litter and Destruction of terrest Presence of wrack line Sediment sorting Scour Multiple observed/pre Abrupt change in plan	rial veg.			
Photos?	Upstream ⊠ Do	wnstream 🗵							
Connection	n to Traditional Nav	igable Waterwa	ay: _	Yes					
Other Comments: Channel is a mixture of bank types.									

Project: Lilly Run	Date:	03/27/19	Stream ID:	WUS 03	
Staff: MM LS	Flow Type: Peren	ınial 🗆	Intermittent \square	Ephemeral D	
Flow Direction: North	Drains Into:	WUS 02			
Fed By: Backwater channel	of WUS 02				
Bank Height: 1'	Water Depth: 0		Width: 2'		
Channel Gradient (%): 1	Bank Stability:	Poor			
Avg. Bank Slope: Vertice	al □ 2:1 ⊠	3:1 □	4:1 or greater □]	
Mesohabitat: % Run: _	0 % Riffle	: 0	% Pool:	0	
Substrate: Cobble □ Veg ⊠ Bedrock □	Gravel □ Riprap □	Sand Concrete	_	ilt ⊠ ck □	
Channel Characteristics:	Natural ⊠ Artific	cial 🗆	Man-altered \square		
Changes in charac Shelving Vegetation matte	d down, bent, or absent ed or washed away	 □ D □ P ⊠ St □ St □ M 	resence of litter and estruction of terrestres resence of wrack line ediment sorting cour lultiple observed/prebrupt change in plan	rial veg. e edicted flow events	
Photos? Upstream ⊠ D	ownstream 🗵				
Connection to Traditional Na	vigable Waterway:	Yes			
Other Comments:					

Project: Lilly Run Dat	e: <u>03/27/1</u>	Stream ID:	WUS 04	
Staff: MM LS Flow Type: Per	rennial \square	Intermittent ⊠	Ephemeral \square	
Flow Direction: West Drains Into:	WUS 02			
Fed By: Pipe				
Bank Height: 3' Water Depth:	0"	Width:3'		
Channel Gradient (%): 2 Bank Stabilit	y: Poor			
Avg. Bank Slope: Vertical □ 2:1 ⊠	3:1 □	4:1 or greater □]	
Mesohabitat: % Run: 0 % Rif	fle: <u>0</u>	% Pool:		
Substrate: Cobble ⊠ Gravel ⊠ Veg □ Riprap □ Bedrock □	San Concret	_	ilt ⊠ ck □	
Channel Characteristics: Natural ☐ Art	ificial 🗵	Man-altered $oxtimes$		
OHWM: Clear, natural line impressed on the ban Changes in character of soil Shelving Vegetation matted down, bent, or abser Leaf litter disturbed or washed away Sediment deposition Water staining	□ II □ II nt ⊠ S	Presence of litter and Destruction of terrest Presence of wrack line Sediment sorting Scour Multiple observed/preserved change in plan	rial veg.	
Photos? Upstream ⊠ Downstream ⊠				
Connection to Traditional Navigable Waterway:	Yes			
Other Comments: Stream originates from small	all pipe to the	e west.		

Project: Lilly Run	Date:	03/27/19	Stream ID:	WUS 05	
Staff: MM LS	Flow Type: Perer	nnial 🗵	Intermittent \square	Ephemeral \Box	
Flow Direction: North	Drains Into:	WUS 02			
Fed By: Originates out	side of the Study Area				
Bank Height: 3'	Water Depth: 4-	6"	Width: _4-5'		
Channel Gradient (%):	3 Bank Stability:	Poor			
Avg. Bank Slope:	/ertical □ 2:1 □	3:1 ⊠	4:1 or greater □]	
Mesohabitat: % Ru	n: <u>80</u> % Riffle	e: <u>10</u>	% Pool:		
Substrate: Cobble Veg Bedrock	□ Gravel ⊠ □ Riprap □	Sand Concrete		ilt □ ck □	
Channel Characteristics:	Natural □ Artifi	cial \square	Man-altered ⊠		
Changes in c Shelving Vegetation r		 □ D ⋈ P □ S □ S □ M 	resence of litter and estruction of terrestrestresence of wrack line ediment sorting cour fultiple observed/prebrupt change in plan	rial veg.	
Photos? Upstream ⊠	Downstream 🗵				
Connection to Tradition	al Navigable Waterway:	Yes			
Other Comments:					

Project: _	Lilly Run	Date	e: <u>03/27/</u>	Stream ID:	WUS 06	
Staff: MI	M LS I	Flow Type: Per	ennial 🗵	Intermittent \square	Ephemeral \Box	
Flow Direct	ion: Northeast	Drains Into:	WUS 05			
Fed By: _C	ulvert outside of the	Study Area				
Bank Heigh	t: <u>2'</u>	Water Depth:	1"	Width: _7'		
Channel Gr	adient (%): _ 3	Bank Stability	/: Mode	rate		
Avg. Bank S	Slope: Vertical	□ 2:1 □	3:1 ⊠	4:1 or greater □		
Mesohabita	at: % Run: <u>10</u>	0 % Riff	le: <u>0</u>	% Pool:		
Substrate:	Cobble ⊠ Veg □ Bedrock □	Gravel ⊠ Riprap □	Sa Concre		iilt □ ck □	
Channel Ch	aracteristics: Na	tural 🗆 Arti	ficial \square	Man-altered $oxtimes$		
OHWM:	Clear, natural line im Changes in character Shelving Vegetation matted d Leaf litter disturbed Sediment deposition Water staining	of soil own, bent, or absen or washed away		Presence of litter and Destruction of terrest Presence of wrack line Sediment sorting Scour Multiple observed/pre Abrupt change in plan	rial veg. e edicted flow events	
Photos? (Jpstream ⊠ Dov	vnstream ⊠				
Connection	to Traditional Navig	gable Waterway:	Yes			
Other Com	ments:					

APPENDIX D PHOTO DOCUMENTATION

WETLANDS, UPLANDS, AND WATERWAYS

1. WET 01 FACING SOUTHWEST

2. WET 01 UPLAND FACING SOUTHWEST

3. WET 02A FACING NORTH

4. WET 02A FACING NORTH

5. WET 02A FACING SOUTH

6. WET 02B FACING SOUTH

7. WET 02B FACING EAST

8. UPL 02 FACING NORTH

9. WET 03 FACING EAST

10. UPL 03 FACING WEST

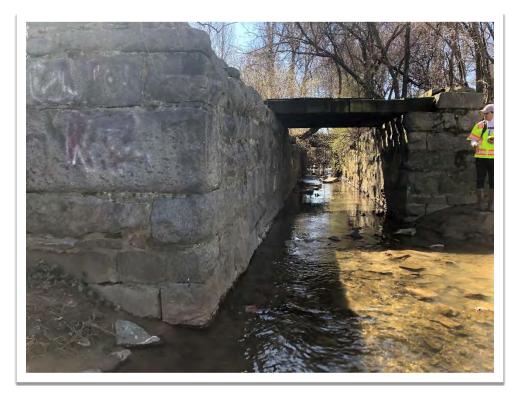
11. WUS 01 FACING SOUTHWEST

12. WUS 01 FACING NORTHEAST

13. WUS 02 FACING WEST, SOUTHERN CULVERT

14. WUS 02 FACING NORTH

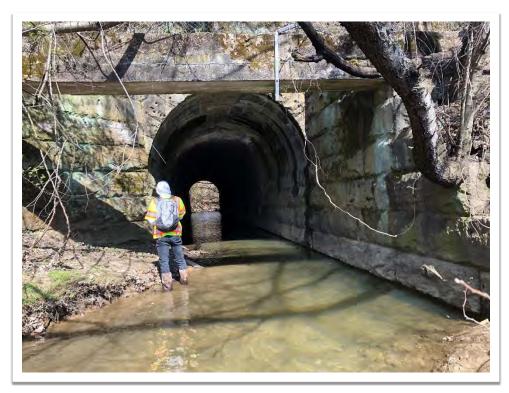
15. WUS 02 FACING NORTH



16. WUS 02 FACING NORTHWEST, CULVERT UNDER FIELD

17. WUS 02 FACING SOUTHEAST, END OF CULVERT

18. WUS 02 FACING SOUTH



19. WUS 02 FACING NORTH

20. WUS 02 FACING NORTH

21. WUS 02 FACING NORTH

22. WUS 03 FACING SOUTH

23. WUS 03 FACING NORTH

24. WUS 04 FACING NORTH

25. WUS 04 FACING WEST

26. WUS 05 FACING SOUTH

27. WUS 05 FACING SOUTH

28. WUS 06 FACING NORTHEAST

29. WUS 06 FACING SOUTHWEST

30. WUS 06 FACING WEST

